
Software Over the Air Update for Modern Software Architecture

Abir Bazzi1, Dr. Di Ma2, and Dr. Adnan Shaout3

Abstract— Installing a software or firmware update on an
electronic control unit (ECU) involves many tricky operational
and security aspects in the process. The most critical parameters
for the application of software over the air (SOTA) update in
safety-critical automotive domains are safety, security and time.
Code signing of software image is the most common security
mechanism used in SOTA. While this mechanism introduces
a signature appended to the software image to validate its
integrity and authenticity, applying it to new automotive archi-
tecture where the software running in the ECU is not anymore a
single image binary coming from one vendor but a set of images
coming from different independent vendors is not free of new
challenges. Existing solutions are based on signing each software
image individually with a dedicated key pair per image. We
propose a new solution to reduce the used keys and provide
the necessary security for the ECU while receiving images from
different vendors. The proposed approach, working at the ECU
level, complement the existing SOTA solutions by implementing
a new Merkle Tree-based algorithm to additionally address
dependencies and conflicts among the software entities within
the ECU using a logical implicit signature verification without
adding much overhead to the process and while keeping key
management in the vehicle compliant with the current process
aiming one key set for SOTA services regardless of how many
software images and vendors exist within the ECU.

Keywords: Software over the air, Safety, Security, Autosar,
Hypervisor, Virtualization, Distributed software development.

I. INTRODUCTION

Autonomous driving, connected cars, and shared mobility
have dominated the automotive industry in recent years.
Such trends significantly impact the architecture model of
the vehicle. While these innovations, built on the digitization
of in-car systems, offer great advantage as well as create new
services and business models for automotive industry, they
come with the risk of attacking safety and cybersecurity of
modern vehicles. Software and hardware components are and
will continue to be among the key innovations in modern
vehicles. The software development market is expected to
grow steadily over the next few years to reach USD 5.3
billion in 2030[22]. ECU software is becoming more similar
to mobile software when different packages are provided
separately and need to be integrated together in the car based
on certain criteria. Virtualization, Hypervisor, Adaptive and
Flexible Classic Platform are example of architectures which
splits today’s binary image into several software binary
images which can be independently developed, integrated,

1Electrical and Computer Engineering Department, The University of
Michigan-Dearborn, Dearborn, Michigan (aybazzi@umich.edu)

2Computer and Information Science Department, The University of
Michigan-Dearborn, Dearborn, Michigan (dmadma@umich.edu)

3Electrical and Computer Engineering Department, The University of
Michigan-Dearborn, Dearborn, Michigan (shaout@umich.edu)

tested, released and programmed on the target ECU. Provid-
ing software patches throughout the full vehicle lifecycle is
essential for safe vehicle operation. If attackers are able to
implant malicious code on a vulnerable embedded software
in the vehicle, they can have access to critical functionalities
and mount further attacks that can put humans life at risk.
The well-known Jeep UConnect attack [8] was caused by
a software update vulnerability in one of the ECUs in the
vehicle.

Software over-the-air update has gained high interest in the
automotive industry. An ECU can only run a new version
of received software after empirically verifying that it has
successfully received the entire correct image file from the
server (directly or through the gateway). The main security
mechanism used for SOTA is code signing for each software
image build for the vehicle as it is critically important to
verify that the contents in the image have not been tampered
with, as well as to verify that the received image is from the
intended publisher. Code signing is a technology which uses
digital signature and the public key infrastructure to sign im-
age files. The integrity of the system relies on securing both
the software image as well as the keys against outside access.
Lots of methods have been proposed, standardized, and
adopted by automotive industry. Such solutions range from
full OTA frameworks (Uptane[13], eSync solution[5]) to ap-
proaches based on online/offline and symmetric/asymmetric
keys([34],[25],[33]), cryptographic hash function ([24]), full
and partial verification ([19],[29],[28]), hardware and soft-
ware implementation([42]), and many other proposals. These
solutions have been performed on ECUs with single image
binary per ECU. Dependencies and conflicts among software
image entities are mainly managed by original equipment
manufacturers(OEM) or the Director repository by Uptane
specification, and there is no way currently for the ECUs
themselves to detect such conflicts once software is installed
in the vehicle. Given the new software architecture (which
decomposes an ECU image into independent, distributed
and somehow connected blocks or software clusters ([45]),
Code signing becomes more complicated and demands more
for resources (memory and processing overhead) as well as
coordination between the publishers and the endpoint ECU
in the vehicle. Each software vendor requires a shared key
which should be setup and stored in the ECU where the
software will be running. ECU has to make sure the software
entity belongs to the corresponding module and configura-
tion. Blockchain based approaches [31],[20],[44],and[23] are
a promising solution for such distributed system. However,
the implementation of Blockchain requires lots of efforts for
OEMs as well as high resource consumption at the ECU

mailto:aybazzi@umich.edu
https://orcid.org/0000-0002-7230-0753
mailto:dmadma@umich.edu
mailto:shaout@umich.edu

level. Therefore, our work aim to optimize code signing
and key management needed for such new architecture to
meet the automotive ECU constraints as well as provide the
necessary security to protect the vehicle against both passive
and active attacks during software over the air updates. In
section 2, we will provide an overview about new software
architecture and SOTA in automotive. In section 3, we
explain the common process of SOTA and the challenges
for new architecture, and then followed with our proposed
solution in section 4.

II. BACKGROUND

A. Software Architecture - New trends

Driven by ADAS and Autonomous Driving, OEMs must
bring together software subsystems into a larger system
and ensure that the developed functions meet specifications
and fulfill their purposes consistently and reliably as well
as software shall be security assessed, authenticated and
integrity protected. Support required by new automotive
systems includes dependable architecture with fail-safe op-
erational systems, cross-domain platforms, high-performance
micro-controllers and computing, distributed and remote di-
agnostics, as well as cloud interaction. To make this possible,
OEMs are in need of new software architecture to leverage
the capabilities of multi-core processors as well as flexible
and hybrid zonal topology. These processors bring additional
hardware support for virtualization and necessary processing
rates.
AUTOSAR started the development of the Adaptive Platform
in 2017 to address current demands of automotive software,
with its powerful central computers and Ethernet-based and
service-oriented communication to provide an optimal foun-
dation for future vehicle architectures. This new platform
architecture requires dynamic deployment and update of
adaptive applications as well as firmware. In addition to the
Adaptive Autosar, modern vehicle architectures require still
microcontroller based on AUTOSAR classic control units
due to strong real-time and high safety requirements. The
current AUTOSAR classic platform is developed for building
one complete executable flashed at once into the microcon-
troller, and thus does not well support those requirements
for more flexibility and independence. A newer AUTOSAR
Flex concept[4] is introduced to split today’s solid image
binary into several binaries representing several software
clusters independently developed, integrated, tested, released
and programmed on the target ECU.

Virtualization is another innovation technology for hard
real-time automotive applications [3]. Hypervisor allows
multiple Virtual machines (VM) to execute together over a
shared hardware platform but in isolation from each-other.
Hypervisor plays an important role as ECUs are getting more
and more consolidated in the new automotive architecture[6].
Hypervisor enables an independent software development
environment for each Virtual machine (VM) development,
and the responsibility of such virtual ECU (vECU) develop-
ment could be distributed across different suppliers or even
different teams within an OEM. Each vECU have eventually

its own vECU binary. It is also perceived that AUTOSAR
applications are most likely to be a VM application, and thus
AUTOSAR application integration will be configured on top
of hypervisor.

Fig. 1. Software Architecture

It is worth to mention some other factors enabling the
split and isolation of software functions or applications
in automotive. The number of ECUs in domain or zone
architectures is being reduced without compromising on
features, and thus more applications are consolidated in one
hardware. OEMs target the decomposition of their software
into different entities to fulfil different requirements such as
combination of safety (including separation of ASIL levels)
and QM applications in same ECU, as well as security related
applications, flexible activation and deactivation of features,
better liability management, diversities in software providers,
and agile software development with split software units
among teams and organizations. Software split support is
mainly required nowadays to enable cost and performance
benefits to the customers. As result, suppliers and OEMs
should be able to integrate multiple applications into single
microcontroller in the next generation ECU as abstracted
in Figure 1. Lower response times are critical to satisfy
hard real-time constraints of typical automotive ECU system.
These applications should then be programmed separately
in flash memory and thus enabling granular updates of
applications during software over the air updates.

B. Software-over-the-air Overview

There are two types of Software update: (1) Local update
and Remote update. The local update refers to the traditional
technique where the users bring their cars to the service cen-
ters or dealerships and software is updated using dedicated
tools through OBD connection. (2) The Remote (Over-the-
air) update refers to the technique where the software is
sent to the vehicle through wireless communication while the
vehicle is running. OEM’s desire is to minimize the impact
on drivers with no down time when performing software
OTA, there should be no risks of leaving vehicle unusable
in any ways after the update. OEMs find many benefits
for implementing software OTA updates: (i) The ability to
update software in a fast and Cost effective–without the need
for physical recalls of the cars, (ii) The opportunity to rapidly
respond to bugs and security vulnerabilities, and (iii) The
ability to generate new revenue by adding new features after
an ECU has been deployed in the field.

Fig. 2. Software OTA update architecture

Figure 2 shows an example of a typical implementation of
software OTA in current vehicle architectures. The gateway
acts as the SOTA master within the vehicle, it receives
through the Telematics/Gateway module the software image
from the OTA server and then distribute it to the target ECU.

C. SOTA Update Threats

The automotive industry is actively working on proactive
measures necessary to secure the vehicles and ensure that
drivers and passengers remain safe. Recent years have seen
an alarming spike in the number of cyber attacks targeting the
automotive industry. Based on the Upstream’s research re-
ports about the automotive cyber incidents occurred in 2020
& 2021[14], 87.7% threats are related to vehicle data/code,
50.8% potential vulnerabilities that could be exploited if not
sufficiently protected or hardened, 24.1% threats regarding
back-end servers related to vehicles in the field, 4.3% threats
to vehicles regarding their update procedures. SOTA itself
comes along with security threats which is also considered
as safety threats since an inadequately protected SOTA im-
plementation, which allows potential attackers to manipulate
safety-critical vehicle applications, can endanger the overall
safety of the vehicle and in the worst case the lives of its
occupants[10].

ECU software is becoming more similar to mobile soft-
ware when different packages are provided separately and
need to be integrated together in the car. The main chal-
lenges for automotive industry are the real time aspects and
resources constraints for how to check in the vehicle as well
as remotely that these individual updates are trusted and
valid. OEMs consider an ECU more like as a remote test unit
where the software packages have to be validated remotely to
make sure ECUs have always the latest and greatest software
package without any changes.

A system is only as secure as its weakest link. An
inadequately protected SOTA implementation, which allows
potential attackers to manipulate safety-critical vehicle appli-
cations, can endanger the overall safety of the vehicle and in
the worst case the lives of its occupants. A connected vehicle
is exposed to both malicious software manipulation as we see
in the IT world as well as physical attacks at hardware level:

• Attacker can introduce manipulated software to the
vehicle

• Attacker can prohibit the update of a package.

• Attacker can downgrade to an older version that con-
tains vulnerabilities.

• Attacker can introduce a personalized software package
intended for one specific car to another car.

• Attacker can manipulate key material for authentic
communication between backend and vehicle, or for
signature verification of the vehicle package.

• Attacker can cause inconsistency between current vehi-
cle configuration and current backend server informa-
tion.

To prevent such attacks, a “defense in depth” approach
is needed. With split software architecture, the OEMs are
really hesitant to let any third party vendors install any piece
of software into their ECUs. When considering evolving
cybersecurity approaches, relevant standards and national
legislation are perhaps the most important market drivers
for cybersecurity approaches (ISO/SAE 21434, UNECE
WP.29, ISO/AWI 24089, Cybersecurity Best Practices by
NHTSA, Uptane IEEE-ISTO 6100.1.0.0 and many others).
Several papers have already presented concepts for a secure
software update process as well as the possible threats that
such systems face. We will present in the next section the
current SOTA strategy used in automotive, followed by a
summary survey on the current proposed SOTA solution.

III. SOTA PROCESS IN AUTOMOTIVE

The SOTA process is usually carried out in several
successive steps as shown in Figure 3: it starts with the
software developer, usually a supplier or the OEM itself, with
releasing a new software image, and then sign it using Public
Key Cryptography (PKC). There is a key pair consisting
of a private key (Prv-k) and a public key (Pub-k) that are
associated with each software image update. Only the signer
(OEM/Supplier) has access to Prv-k (protected in a secured
environment) whereas Pub-k can be publicly distributed and
deployed in the ECUs. The image code (x) is first hashed
to a short fixed length h(x) (e.g. 32 bytes calculated using
SHA256). Then, a digital signature is computed over the
hash value using the private key Prv-k.

Fig. 3. Software OTA update implementation in automotive

Once the software package is received by the ECU end
target, a hash function (e.g. SHA-256) is applied to the
code image to calculate the hash or digest. Next, the digital

signature is decrypted using the stored public key, mostly
computed in a security controller (HSM or TPM) which
provides tamper-resistant features in accordance with the
Common Criteria (CC) security standard. The calculated dig-
ital digest and the decrypted digital digest are then compared
for an exact match. If the signature verification is successful,
the downloaded image file is accepted and activated. It is
worth to mention that it is optional to encrypt the image
before sign it. It is important to track installation of updates
to ensure that ECU have been updated successfully, and
in case of failures, the ECU should also be resilient and
be able to recover from failures. ECU manufacturers may
wish to monitor remotely which versions of software and
confirm that latest unaltered software is executed in an ECU.
To enable remote attestation, ECU needs to communicate
with the server performing similar verification as the one
performed during the SOTA updates. As a result, ECUs with
old software should be triggered and upgraded to the newest
versions. ECU with malicious or unknown software should
be isolated for forensic inspections if it is not possible to
locally roll back to a previous working software.

A. Existing Software Update Solutions

In this section, we provide an overview of existing work
related to software update and distribution in automotive
industry as well as similar industry. Consumer electronics,
commercial aviation and medical devices are adjacent indus-
tries that have many hardware devices containing loadable
firmware components, and have the task to track and verify
the installation of the software updates across their fleets.
In the NHTSA report [18], the authors present a literature
review of the state-of-the-art of software updates in the
industries related to automotive. While there is no single and
perfect reference model for securing software updates due to
different requirements and user experiences of these systems,
there are mainly 2 common existing defense mechanisms:
trusted content distribution network, and digitally signed
software update.

In Avionics, software is transferred into a Loadable Soft-
ware Aircraft Parts (LSAP), within the Electronic Distribu-
tion of Software (EDS) Crate [1], loaded using different types
of onboard loaders. Once manufacturer provides and loads
LSAP updates to their repositories, they notify airlines which
have to retrieve and apply such updates. A professionally
trained technician will then trigger the transfer of the LSAP
to the aircraft via a local secure wireless connection. The
ARINC 835 (Guidance for Security of Loadable Software
Parts Using Digital Signatures) report [2] describe the stan-
dard to use digital signatures for software distribution to the
aircraft. There is a difference on how airlines used digital
signatures (either one or multiple signatures).

The internet of things (IoT) devices have similar re-
source constraints (e.g. energy, computation, and storage
capacity) to the automotive ECUs. Several standards groups
and consortia have issued documents on secure software
and firmware update. The Trusted Computing Group (TCG)
has released a reference report [16] describing how secure

software and firmware update for embedded systems can be
done using Trusted Computing technologies. Each updated
software should be provisioned with its manufacturer’s public
key, or a hash of the manufacturer’s public key. The Internet
Engineering Task Force (IETF) Software Updates for Internet
of Things (SUIT) working group is actively working on
specifying a software update architecture for IoT devices.
The current informational RFC9019 [9] describes the archi-
tecture and security requirements for firmware updates of
IoT devices and standardize the manifest files used for the
update process.The pre-authorisation step involves verifying
whether the entity signing the manifest is indeed authorized
to perform an update. The authors of [31], [20] , [44], and
[23] suggests a blockchain-based firmware update for IoT
devices where different nodes are defined with different roles
including the verification node managed by the device manu-
facturer and include the main information about the firmware.
The main drawback is the IoT device (as a Blockchain
node) needs to store a copy of Blockchain’s ledger in the
devices which can be challenging due to limited resources
of IoT devices, as well as not suitable for heterogeneous IoT
ecosystem.

The automotive industry has already started to follow
the user and access Level and interaction attributes used in
consumer electronics. With Tesla [11], the user can check for
new software updates by using their touchscreen to install the
update immediately or schedule for later. As shown in Table
I, we can categorize SOTA solutions in automotive based on
the security mechanisms used by the researchers. They all
follow the process described in the SOTA Process in Section
III.

B. Challenges of existing solutions

Lots of methods have been considered, standardized,
adopted by automotive industry. From one side, Uptane and
other proprietary solutions have been introduced to manage
software update process. On the other side, AUTOSAR
and new automotive trends have defined the architecture to
manage software update needs within an ECU. Uptane is
a comprehensive and robust solution to securing SOTA on
vehicles. Starting with Uptane specification, dependencies
and conflicts between ECU software image entities are
mainly managed by the Director repository. Uptane is only a
framework for software over the air. It assumes all should be
done properly and there should not be any backdoor where
the system can be compromised. If the Director repository
is not careful in updating software images, the vehicle may
end up installing conflicting images that will cause ECUs
to fail to interoperate [15]. There is no way currently for
the ECUs to detect such conflicts once software is installed
in the vehicle. Same concept apply to dependencies and
conflicts between the software entities within an ECU soft-
ware image. If the repository is also not careful in installing
any unintended software entities, the ECU may end up
installing malfunctioned software that will cause an ECU
to malfunction, for example an attacker takes control over
an application by buffer overflows causing malfunctioned

execution in the module. If the ECU is not able to detect
such error, then the attacker is able to influence all the
other applications, the attacker can exhaust resources (e.g.
CPU memory), can call interrupts, or can misuse interfaces
exposed by the other applications.

As mentioned earlier, software updates need to be applied
across a distributed system of automotive devices, which are
designed and serviced by different suppliers. OEMs has to
shift from the traditional vehicle architectures toward the
more flexible and scalable approach required for the next
generation architecture, thus, a single ECU integrates soft-
ware and hardware dynamically from multiple vendors. The
new software architecture leads to changes in the software
release as shown in Figure 4. Uptane allows software image
to be available on a private repositories - not just limited
to OEM ones. OEMs already announced the implementation
for application-based software, not just for infotainment and
media but also for traditional functionality such as tuning
services (e.g. [7]). Thus, software images will be saved on
directories that might not be managed by OEMs or standard
suppliers.

In order to support the individual software update to each
application binary, each image needs to have its own digital
signature created with a dedicated key pair (private and
public keys). if any of the keys is compromised for such
images, the repository (director in case of Uptane framework)
might not able to detect such issue and a malfunction
software can be installed in the ECU, thus, vehicles becomes
as vulnerable to attack by malicious parties as any other
smart devices.

Fig. 4. Software release process: current versus future

Regardless of the used SOTA approach, certain features
are common to the process. Most approaches aim to ensure
software safety and security using digital signatures, hash,
cryptography, etc... There is a need that the the microcon-
troller establishes a root-of-trust, and includes a handler
which verifies integrity, authenticates and validate the image
at reception through the signature. As much as it is important
to sign image and related metadata, the security of ECUs
depends on precisely how it is signed (e.g. online keys
vs. offline keys, symmetric vs. asymmetric keys) and how
protected are the signing keys. This choice is effectively a
performance vs. security trade-off. Before any SOTA service
can take place, the OEM should provide the production
signing verification keys for each ECU. Each ECU/supplier
is assigned only one public key to verify the signature of
any software packages programmed on that ECU. Multiple
methods of public key deployment and storage exist based on

OEM processes and ECU/microcontroller capabilities. The
keys are commonly generated using public key infrastructure
(PKI) and then public or shared key is injected in ECUs
at the assembly line, or compiled with the ECU primary
bootloader software of the ECU, and can be updated/changed
via bootloader update. Diffie-Hellman (DH) or EC Diffie-
Hellman (ECKA-DH) are commonly used as key agreement
procedures for symmetric keys.

Key management has many functions, such as key gen-
eration, key distribution, key update, key storage, and key
destruction. Key management and security is extremely im-
portant through the whole lifecycle of the vehicle. Confi-
dentiality, authenticity and integrity of software update are
ensured if shared keys are properly secured. Extraction and
cloning of keys should be prevented. Any compromising for
the keys means no security for the vehicle. If an adversary
is able to read out or replace a public key, he might
be able to manipulate code or prevent software updates.
The keys must be kept confidential over the vehicle entire
life cycle. Keys must not be transmitted unprotected over
internal ECU hardware devices or over networks external
to the ECU. Thus, each ECU should have its keys stored
locally. Protecting the keys is crucial, and protection can
be achieved only by using secure memory and applying
hardware-assisted approaches employing a security anchor
(e.g. HSM, TPM)[39].

The use of keys ranges over the entire vehicle life cycle,
from initial keys used during development, until production
keys used to update a new software or activate a new feature,
including the establishment of these keys in the ECU. Each
ECU should deal with the whole cycle of a key. Since there
was no standardization of key management previously, but
solutions were needed, automotive OEMs followed mainly
individual approaches. An initial step towards standardization
was the KeyM module[12] introduced with AUTOSAR 4.4.
It does not standardize a specific key management strategy,
rather it offers generic interfaces for implementing various
strategies. The automotive community should focus more
intensively on harmonizing strategies for key management.
Whatever the used SOTA approach, each software supplier
will require a unique set of keys, setup these keys have to
be done and implemented into the ECU before any software
download can be done. In some cases, a key set should be
used for a limited time period, and should be determined
how often the keys should be changed to achieve a sufficient
level of privacy. If software application is transitioned from
one ECU to another ECU, keys have to be destroyed at old
ECUs and new setup has to be done in the new ECU.

The hardware security module(HSM) and trusted platform
module(TPM) enable secure storage of keys and accel-
eration of cryptographic computations. A protected non-
volatile memory is required to store the keys in each ECU.
Each key usually requires some additional protection bytes
used to protect the memory slot against failures as well as
replay attacks during update. In general, a limited number
of write cycles is supported and guaranteed per memory
slot due to the physical memory write endurance. How-

ever, the ECUs are already facing challenges on the key
handling and management for all existing keys needed for
used security applications within the vehicle (Debug ac-
cess, SecOC, Flash protection...). In addition, newer security
mechanisms have been adopted by OEMs and recommended
by standards such as intrusion detection, remote debugging,
IpSec, Plug&Charge (ISO15118)...These applications come
also with the need of using crypto keys. Thus, one of the
main challenges for SOTA for new software architecture lies
in the key management needed for each application software
binary code.

The process to setup, distribute and update each shared or
public key adds lots of overhead for the vehicle in addition
to the memory resources. Thus, we need to come up with
a method that allows each update to be secure as well as
independent from other application software clusters while
using the same hardware devices and resources.

IV. PROPOSED SOLUTION

Our proposed solution is to extend current solutions by
a new approach to address the new software architecture
including dependencies and conflicts among the software
entities as well as create a logical implicit verification
without adding much overhead to the process and ECUs
while keeping key management compliant with the current
system aiming one key set for SOTA services regardless of
how many software applications and vendors exist for the
ECU software. The proposal will ease the implementation
and reduce complexity in the ECU, and at the same time,
shift more control from the vehicle to the server repositories.

Our proposed solution is based on using the Merkle Tree
approach to calculate the signature to update the software
within an ECU. Each ECU is allocated a key pair for
software update task - same as the traditional process where
software image application is a single file per ECU. This
key pair is used to sign the Merkle tree Root created with
the hashes or message digests of each software entity block
residing on the ECU. With this approach, a single key is still
used to update multiple independent software image binaries,
making this a fairly efficient digital signature scheme for
over the air update for new software architecture. Merkle
(hash) tree based authentication[35] has been widely used
owing to its lightweight computation and storage overheads
with wide range of applicability[27], including blockchain
technologies[32] as well Merkle trees have been used as basis
of most hardware memory authentication and protection
schemes[37][46]. The reliability of the Merkle tree is based
on the collision resistance characteristic of hash function
used to construct it. It is assumed that it is infeasible
to find an image software of a given hash value within
a computationally reasonable time[30], only the repository
with the same software images can get the same Merkle tree.
Thus, the security of this Merkle tree-based solution depends
on the security of the hash function in use.

There are two parts to consider when proposing such
solution. Along each image software, the OTA server needs
to only send the signed Merkle Root with the software image.

Once the ECU receives the software image, it constructs or
retrieves the Merkle tree from the hashes of the software
images, then it determines whether the result is the same as
the one received from the server (after decrypting with the
followed by constituting with the public key of the ECU).
Once verified, the ECU stores the value of root node in
the Merkle tree in a secure location. The software supplier,
OTA server, and ECU have the information on the hash
function to be used and the size of each image software
prior to the verification. The Merkle tree based scheme
is designed to work properly regardless of the number of
verification or number of software components. This implies
that the implementation of the Merkle tree schemes has to
be implemented efficiently in a periodic manner, especially
when the ECU has tremendous contents to validate. Based
on ECU capabilities, the complete Merkle Tree can be saved
in the ECU, so the verification can be done quickly. Upon a
change of any software image, the correspondent hash (leaf
node in the merkle tree) is changed. Thus, all the nodes
on the path from that leaf to the root should be changed
accordingly. For smaller processors (secondary ECU), it is
possible that only the Merkle tree root can be saved in secure
memory. Such ECU only stores the value of the root node
of the tree and removes the rest of the data once the tree
is constructed. Upon a change of any software image, the
ECU has to re-create the complete tree to obtain the MT root.
The decision to save complete Merkle Tree nodes versus just
the root is a memory/cost versus signature verification time
trade-off.

Uptane uses layered defense mechanisms so the security
of automotive software updates does not degrade all at once,
but is supported by a hierarchy in which different levels of
access to vehicle’s or the automaker’s infrastructure must
be gained. Software decomposition into independent com-
ponents and outsourcing software to non-OEM (third-party)
storage means that control of the software is delegated to the
authority controlling the remote repository. Inadvertent soft-
ware manipulations are possible as third-party repositories
are expected to be less vigilant than the OEM repositories.
By extending Uptane framework with our Merkle-tree-based
digital signature, additional level is built into the security
system to efficiently verify the integrity of the software image
stored in a remote repository. Even if attackers compromise
servers, gain access to third party software vendors, these
incursions will be limited in how much damage they can
cause to the ECU as our solution enables the ECU itself
to detect suspicious updates software as well as the OEM
to detect an ECU with wrong software or old versioned
software. This Merkle tree-based approach enables verifying
that the server and the ECU own the same software images
and related ECU information. The server needs to generate
the Merkle tree for the software components residing in the
ECU, while the ECU has to calculate a few number of hash
values to generate the new Merkle tree root and compare it
with the received decrypted signature value.

The Merkle tree has two other features: the first is quick
location modification. If a data node is modified, this affects

only the nodes from this node to the root. The Merkle
tree’s second feature is Zero-knowledge proof, which means
that the prover can convince the verifier that a particular
assertion is correct without providing any useful information.
When a software image is updated, the ECU calculate its
hash and update the correspondent leaf nodes, and with the
remaining software information, the ECU calculates new
root. Therefore, if the result is the same as the received
root(decrypted signature), this can prove that this software
image is valid, and there is no need to publish the information
of other software components.

Fig. 5. Merkle Tree approach for software image digital signature

• SW-X: Software image component file downloaded from server and to be
programmed in the ECU. There are a total of N components.

• Hx: Hash value of software component X. This represents the leaf nodes of the
Merkle tree.

• Hy,z: Hash value of child nodes = Hashing (Hy, Hz).
• MTROOT: The hash value stored in the root node of the Merkle tree. This value

is signed with the private key to create the signature.
• l(i): level of node i.

As show in Figure 5, each leaf node of this full balanced
Merkle tree represents the hash of a software component(e.g.
N is the number of leaf nodes or number of software
components/blocks/modules). There is a single root MT
per ECU software. This root MT will be compared to the
decrypted received signature of the software image update to
validate the software image update. To validate the integrity
of a software component, all the intermediate nodes on the
path from the correspondent leaf node to the root node need
to be consulted. Thus, the validation depends on the number
of levels of the tree. A smaller MT with fewer leaf nodes and
fewer MT levels takes less time to verify a corresponding MT
branch during a leaf node update (software block update).
The more leaf nodes are, the more MT levels are used, and
thus more MT branches to change and verify any updates
to a software block. The number of tree levels is equal to
[logkN] where k is the arity of the tree.

The software components are expected to have different
sizes, but assumed to be in sizes aligned with the micro-
controllers flash sector sizes. As some software components
are updated more often than others, it is efficient to consider
using Multi-root Merkle tree (MMT) concept. With MMT,
software components are arranged into groups. Each group
has its own MT and correspondent root. These roots then

represent the leaf nodes of another Merkle tree to calculate
the Root used to validate the signature. The advantage of us-
ing MTT over classical single root MT scale logarithmically
with the number of groups, Theoretically, a k-ary MT with
leaf nodes arranged in n groups reduce MT level by [logkn].
For example, for a binary Merkle tree, the maximum depth
from leaf to root is at most [log2n] for n software components
blocks. Thus, for any software component update, it is faster
to span and update the individual MT than the single-root
MT for all software components, substantially reducing the
MT reads/updates, and decreasing time to update and verify
the MT root. Different designs for the Merkle trees can be
used depending on the software architecture and intended
performance. In addition to the full balanced tree and multi-
Root Merkle tree, left/right/middle skewed trees[21] can be
used. The main goal with skewed trees is to have shorter
paths for software components updated more often, and
eventually fast signature verification. There are different
possible skewness levels e.g. skewed-by-two, etc.. With each
level, the shorter paths gets shorter, while the longest path
gets longer. The are 1/2 as many nodes on the short path
as there are on the long path, so skewing the tree too
much can actually hurt the performance if it is not designed
carefully. In Figure 6, right skew-by-one Merkle tree and
middle skewed-by-one Merkle tree are shown, N/4 nodes
have path to the root shorter by 1 hop, N/4 have same path
as for full tree and N/2 have a path that is 1 hop longer.

Fig. 6. Merkle tree design Types

Our proposed solution is also suitable for future quantum
age. Quantum computers may break cryptographic algo-
rithms in the future or decrypt data from the past (assumption
is in 10 to 15 years). While the standardization of new post-
quantum cryptographic schemes to replace RSA and ECC is
still ongoing until 2024, hash-based signatures such as LMS
and XMSS[26] are particularly suited for the protection of
firmware updates due to their high security level using hash
functions (e.g., SHA-2). Devices with over 10 years lifestyle
must be prepared for the quantum computing range. Thus,
post-quantum cryptographic is relevant for the automotive
industry due to long lifetime of the vehicle and ECUs.
Hashing-hardware may help (in general) and XMSS can
greatly benefit from a SHA-256 accelerator. A merkle-based
solution for SOTA allows OEMs to built in scalable solution
across various platforms for different types of ECUs. It
is believed that the usage of Merkle signature scheme is

resistant against quantum computer algorithms when used
with sufficiently large security parameters.

V. CONCLUSION

Bruce Schneier, called a “security guru”, says that “com-
plexity is the enemy of security. As systems get more
complex, they get less secure.” This directly applies to our
use-case where we are moving from securing one application
image binary update per ECU to many independent images
produced by diverse software parties and updated in the
field. With our proposed approach, we tend to to reduce
the key materials needed at the ECU level to update the
individual independent software applications, smoothly add
a new software image without setting up specific keys in
the ECU, provide the necessary security for the ECU while
receiving images from different repositories, as well as
confirm compatibility of the new image with the target ECU
avoiding any malfunctioning. advantages can be summarized
into main three folds: the sensitivity to alternations, the
tremendous amount of information that can be stored, and
the ability to organize information recorded by packing
them altogether. Our ongoing and future work focuses on
implementation of such merkle tree based SOTA solution and
study of performance improvements since not all software
components are updated equally and frequently.

A
pp

ro
ac

h
D

es
cr

ip
tio

n
Pr

os
C

on
s

Se
cu

ri
ty

Pi
lla

rs

M
es

sa
ge

-d
ig

es
t

/
H

as
h

ba
se

d(
e.

g.
[3

6]
)

So
ft

w
ar

e
pa

ck
ag

e
is

ha
sh

ed
(

e.
g.

SH
A

-2
-2

56
),

an
d

re
su

lt
is

co
m

pa
re

d
w

ith
a

tr
us

te
d

kn
ow

n-
go

od
va

lu
e.

D
iff

er
en

t
w

ay
s

of
ha

sh
ch

ai
n

ha
ve

be
en

pr
op

os
ed

to
in

cr
ea

se
se

cu
ri

ty
.

C
om

m
on

ly
us

ed
fo

r
D

at
a

V
al

id
at

io
n/

Pl
at

fo
rm

in
te

gr
ity

/S
ec

ur
eB

oo
t

Si
m

pl
e

to
im

pl
em

en
t.

O
ne

-w
ay

on
ly

(c
om

pu
ta

tio
na

lly
in

fe
as

ib
le

to
co

m
pu

te
th

e
in

ve
rs

e)
.N

o
us

ed
K

ey
s.

C
an

be
so

ft
w

ar
e

or
ha

rd
w

ar
e

im
pl

em
en

te
d

(i
m

pl
em

en
ta

tio
ns

ar
e

ef
fic

ie
nt

an
d

fa
st

in
So

ft
w

ar
e)

.
M

em
or

y
ef

fic
ie

nt
(

ty
pi

ca
lly

25
6b

its
)

In
ef

fic
ie

nt
w

he
n

th
er

e
ar

e
m

an
y

co
lli

si
on

s.
K

no
w

n-
go

od
va

lu
e

m
us

t
be

R
ea

d
&

W
ri

te
pr

ot
ec

te
d.

Sl
ow

er
th

an
C

M
A

C
if

A
E

S
H

W
ac

ce
le

ra
tio

n
is

us
ed

.

In
te

gr
ity

:
ye

s
A

ut
he

nt
ic

at
io

n
:

no
C

on
fid

en
tia

lit
y:

no

Sy
m

m
et

ri
c-

ba
se

d[
33

]

So
ft

w
ar

e
pa

ck
ag

e
is

en
cr

yp
te

d
w

ith
a

co
m

m
on

ke
y,

an
d

th
en

de
cr

yp
te

d
at

th
e

re
ce

iv
er

si
de

.
A

no
th

er
ap

pr
oa

ch
is

to
ge

ne
ra

te
a

m
es

sa
ge

au
th

en
tic

at
io

n
co

de
us

in
g

th
e

co
m

m
on

ke
y

(H
as

h-
ba

se
d

m
es

sa
ge

au
th

en
tic

at
io

n
e.

g.
SH

A
-2

56
-H

M
A

C
or

us
in

g
C

ip
he

r-
ba

se
d

m
es

sa
ge

au
th

en
tic

at
io

n
e.

g.
A

E
S-

12
8-

C
M

A
C

)
an

d
ve

ri
fy

th
e

sa
m

e
M

A
C

co
de

at
re

ce
pt

io
n.

C
om

m
on

ly
us

ed
fo

r
St

or
ed

da
ta

en
cr

yp
tio

n
/

E
nc

ry
pt

ed
co

m
m

un
ic

at
io

n.

Fa
st

cr
yp

to
gr

ap
hy

.
E

as
ily

im
pl

em
en

te
d

(
A

E
S

ac
ce

le
ra

to
rs

ar
e

w
id

el
y

av
ai

la
bl

e
in

m
ic

ro
co

nt
ro

lle
rs

.)
Sm

al
l

ke
y

le
ng

th
s.

E
xa

m
pl

e
of

us
ed

Sy
m

m
et

ri
c

K
ey

s:
A

E
S:

12
8/

19
2/

25
6

bi
ts

.
C

H
A

C
H

A
20

:
12

8+
bi

ts
.

M
od

es
of

sh
ar

in
g:

D
iffi

e-
H

el
lm

an
an

d
Ph

ys
ic

al
ly

.

K
ey

se
cu

ri
ty

(k
ey

m
us

t
be

R
ea

d
&

W
ri

te
-p

ro
te

ct
ed

)
M

an
ag

in
g

ke
ys

in
th

is
sy

st
em

is
a

ch
al

le
ng

e.
C

om
pl

ex
ity

co
ns

is
te

nt
re

ga
rd

le
ss

of
nu

m
be

r
of

us
er

s
or

fr
eq

ue
nc

y
of

us
e

In
te

gr
ity

:
ye

s
A

ut
he

nt
ic

at
io

n
:

ye
s

C
on

fid
en

tia
lit

y:
ye

s

A
sy

m
m

et
ri

c-
ba

se
d[

34
]

So
ft

w
ar

e
pa

ck
ag

e
is

en
cr

yp
te

d
w

ith
a

pr
iv

at
e

ke
y,

an
d

th
en

de
cr

yp
te

d
at

th
e

re
ce

iv
er

si
de

w
ith

th
e

pu
bl

ic
ke

y.
A

no
th

er
ap

pr
oa

ch
is

to
ge

ne
ra

te
a

co
de

si
gn

at
ur

e
by

ha
sh

in
g

th
e

so
ft

w
ar

e
pa

ck
ag

e
an

d
th

en
en

cr
yp

te
d

us
in

g
a

pr
iv

at
e

ke
y

(e
.g

.R
SA

20
48

,E
d2

55
19

)

M
os

t
se

cu
re

fo
r

SW
up

da
te

s.
K

ey
Fl

ex
ib

ili
ty

.
R

el
at

iv
el

y
lo

ng
ke

y
le

ng
th

s.
E

xa
m

pl
e

of
us

ed
A

sy
m

m
et

ri
c

K
ey

s:
R

SA
-2

04
8:

25
6

by
te

s
R

SA
-7

09
6:

51
2

by
te

s
E

C
D

SA
(s

ec
p5

21
r1

):
pu

bl
ic

ke
y

:1
04

2-
bi

ts
ig

na
tu

re
:

13
2

by
te

s
E

dD
SA

:k
ey

s
32

/5
7b

yt
es

Si
gn

at
ur

e:
64

/1
14

by
te

s
M

od
es

of
sh

ar
in

g:
PK

I
Sa

m
e

ve
ri

fic
at

io
n

as
a

Se
cu

re
B

oo
t

st
ra

te
gy

.

K
ey

se
cu

ri
ty

(k
ey

m
us

t
be

R
ea

d
&

W
ri

te
-p

ro
te

ct
ed

).
L

ar
ge

ke
ys

(
2k

b)
,s

m
al

le
r

ke
ys

fo
r

E
C

C
(2

56
b)

Sl
ow

er
cr

yp
to

gr
ap

hy
th

an
Sy

m
m

et
ri

c
sc

he
m

e
C

om
pl

ex
to

im
pl

em
en

t
fo

r
so

m
e

al
go

ri
th

m
s

(
e.

g.
E

C
D

SA
an

d
E

dD
SA

)
C

om
pl

ex
ity

gr
ow

s
w

ith
nu

m
be

r
of

us
er

s
an

d
fr

eq
ue

nc
y

of
us

e

In
te

gr
ity

:
ye

s
A

ut
he

nt
ic

at
io

n
:

ye
s

C
on

fid
en

tia
lit

y:
ye

s

B
lo

ck
ch

ai
n-

ba
se

d[
40

][
17

]

D
is

tr
ib

ut
ed

pe
er

-t
o-

pe
er

da
ta

ba
se

,M
ai

nt
ai

ne
d

by
th

e
ne

tw
or

k
m

em
be

rs
.

D
at

a
is

sa
ve

d
on

ea
ch

no
de

,T
ra

ns
ac

tio
ns

ar
e

sa
ve

d
in

to
bl

oc
ks

.
E

ac
h

bl
oc

k
is

ch
ai

ne
d

to
th

e
pr

ev
io

us
bl

oc
k.

C
ry

pt
og

ra
ph

y
is

ba
se

d
on

H
as

hi
ng

an
d

D
ig

ita
l

si
gn

at
ur

es
(

us
in

g
as

ym
m

et
ri

c
cr

yp
to

gr
ap

hy
e.

g.
E

C
D

SA
)

Im
m

ut
ab

le
-

(p
er

m
an

en
t

an
d

ta
m

pe
r-

pr
oo

f)
.

D
ec

en
tr

al
iz

ed
co

nt
ro

lle
d.

R
ed

un
da

nt
de

ce
nt

ra
l

co
py

on
ev

er
y

no
de

of
th

e
ne

tw
or

k.
C

on
se

ns
us

-b
as

ed
,c

re
at

es
tr

us
t

an
d

in
te

gr
ity

in
an

un
tr

us
te

d
en

vi
ro

nm
en

t

N
ew

to
A

ut
om

ot
iv

e
H

ig
h

m
em

or
y

co
ns

um
pt

io
n

in
th

e
E

C
U

In
te

gr
ity

:
ye

s
A

ut
he

nt
ic

at
io

n
:

no
C

on
fid

en
tia

lit
y:

ye
s

Se
cu

re
So

ft
w

ar
e

R
ep

os
ito

ry
Fr

am
ew

or
k[

13
][

15
]

Fr
am

ew
or

k
in

tr
od

uc
ed

to
al

lo
w

re
po

si
to

ri
es

to
bu

ild
di

ff
er

en
t

se
cu

ri
ty

m
od

el
s

th
at

pr
ov

id
e

va
ry

in
g

de
gr

ee
s

of
se

cu
ri

ty
an

d
us

ab
ili

ty
.

M
os

t
re

ce
nt

pr
op

os
ed

fr
am

ew
or

k
is

U
pt

an
e

:
M

ul
tip

le
se

rv
er

s
kn

ow
n

as
re

po
si

to
ri

es
ar

e
us

ed
.

Im
ag

e
re

po
si

to
ry

ho
ld

s
th

e
im

ag
es

an
d

th
e

co
rr

es
po

nd
in

g
m

et
ad

at
a.

D
ir

ec
to

r
re

po
si

to
ry

in
st

ru
ct

s
ve

hi
cl

es
as

to
w

ha
t

up
da

te
s

sh
ou

ld
be

in
st

al
le

d
ne

xt
.

Se
pa

ra
tio

n
of

tr
us

t.
T

hr
es

ho
ld

si
gn

at
ur

es
.

E
xp

lic
it

an
d

im
pl

ic
it

re
vo

ca
tio

n
of

ke
ys

.
K

ee
pi

ng
th

e
m

os
t

vu
ln

er
ab

le
ke

ys
of

fli
ne

.
Fl

ex
ib

le
Im

pl
em

en
ta

tio
n:

Fu
ll

or
pa

rt
ia

l
ve

ri
fic

at
io

n
A

sy
m

m
et

ri
c

or
sy

m
m

et
ri

c
E

C
U

ke
y,

E
nc

ry
pt

ed
or

un
en

cr
yp

te
d

up
da

te
im

ag
e.

O
E

M
ha

s
to

se
tu

p
th

e
Im

ag
e

an
d

D
ir

ec
to

r
re

po
si

to
ri

es
,

an
d

Ti
m

e
se

rv
er

(i
f

us
ed

)

In
te

gr
ity

:
ye

s
A

ut
he

nt
ic

at
io

n
:

ye
s

C
on

fid
en

tia
lit

y:
ye

s

So
ft

w
ar

e
Pa

ck
ag

e
U

pd
at

e
St

ra
te

gi
es

[2
8]

[3
8]

[4
1]

[4
3]

Fu
ll

bi
na

ry
:

T
he

ne
w

so
ft

w
ar

e
is

se
nt

in
its

en
tir

et
y.

D
iff

fil
e:

th
e

ne
w

so
ft

w
ar

e
is

co
m

pa
re

d
to

th
e

pr
ev

io
us

ve
rs

io
n

an
d

cr
ea

te
s

a
“d

iff
”

fil
e

w
hi

ch
co

nt
ai

ns
a

lis
t

of
di

ff
er

en
ce

s
be

tw
ee

n
th

em
.O

nl
y

th
e

di
ff

fil
e

w
ill

be
tr

an
sm

itt
ed

to
th

e
ve

hi
cl

e.
C

om
pr

es
si

on
:

C
od

e
co

m
pr

es
se

d
ba

se
d

on
re

pe
at

ed
ly

re
pl

ac
in

g
pa

tte
rn

s
w

ith
si

ng
le

to
ke

ns
us

in
g

av
ai

la
bl

e
di

ff
er

en
ce

te
ch

no
lo

gi
es

.
“A

/B
”

ap
pr

oa
ch

:
re

qu
ir

ed
do

ub
le

th
e

fla
sh

am
ou

nt
on

ea
ch

E
C

U
so

th
at

it
ca

n
co

nt
ai

n
th

e
cu

rr
en

t
so

ft
w

ar
e

in
“p

ri
m

ar
y”

fla
sh

an
d

ha
s

sp
ac

e
fo

r
th

e
fu

ll
ne

w
ve

rs
io

n
in

th
e

“s
ec

on
da

ry
”

fla
sh

.
“I

n
pl

ac
e”

ap
pr

oa
ch

:
on

ly
on

e
ve

rs
io

n
of

th
e

so
ft

w
ar

e
ex

is
ts

on
th

e
de

vi
ce

an
d

in
di

vi
du

al
bl

oc
ks

ar
e

er
as

ed
an

d
pr

og
ra

m
m

ed
as

pa
rt

of
th

e
up

da
te

.

Fu
ll

bi
na

ry
:

N
o

re
lia

nc
e

on
th

e
pr

ev
io

us
so

ft
w

ar
e

so
th

at
th

e
up

da
te

ca
n

ta
ke

pl
ac

e
ev

en
if

th
e

pr
ev

io
us

ve
rs

io
n

ha
s

be
co

m
e

co
rr

up
te

d.
D

iff
bi

na
ry

:
Q

ui
ck

er
to

tr
an

sm
it

as
sm

al
le

r
fil

e
si

ze
s

th
an

or
ig

in
al

so
ft

w
ar

e.
A

/B
ap

pr
oa

ch
:

B
es

t
fit

fo
r

th
e

us
er

s
as

th
e

E
C

U
re

m
ai

ns
in

no
rm

al
op

er
at

io
n

us
in

g
th

e
pr

im
ar

y
st

or
ag

e

Fu
ll

bi
na

ry
:

R
eq

ui
re

s
tim

e
to

tr
an

sm
it

th
e

bi
na

ry
an

d
sp

ac
e

to
st

or
e

it
at

th
e

re
ce

iv
in

g
E

C
U

.
Tr

ad
iti

on
al

E
C

U
s

ar
e

ty
pi

ca
lly

co
m

m
un

ic
at

in
g

on
C

A
N

bu
ss

es
at

50
0k

bi
t/s

D
iff

bi
na

ry
:

R
el

ia
nt

on
th

e
pr

ev
io

us
fir

m
w

ar
e

be
in

g
a

sp
ec

ifi
c

ve
rs

io
n.

In
cr

ea
se

s
co

m
pl

ex
ity

in
th

e
E

C
U

.
A

/B
ap

pr
oa

ch
:

In
cr

ea
se

d
co

st
du

e
to

du
pl

ic
at

in
g

th
e

ex
ec

ut
io

n
fla

sh
on

th
e

M
C

U
.

“I
n

pl
ac

e”
ap

pr
oa

ch
:

T
he

ve
hi

cl
e

is
in

op
er

ab
le

du
ri

ng
th

e
up

da
te

.
N

o
“r

ol
l-

ba
ck

”
to

pr
ev

io
us

im
ag

e

B
as

ed
on

H
as

h-
ba

se
d,

Sy
m

m
et

ri
c

an
d

as
ym

m
et

ri
c

al
go

ri
th

m
s.

TA
B

L
E

I
S

O
F

T
W

A
R

E
O

TA
U

P
D

A
T

E
A

P
P

R
O

A
C

H
E

S
U

S
E

D
IN

A
U

T
O

M
O

T
IV

E

REFERENCES

[1] Arinc 827-1: Electronic distribution of software by crate (eds crate).
Report. Aeronautical Radio Inc.

[2] Arinc 835-1: Guidance for security of loadable software parts using
digital signatures. Report. Aeronautical Radio Inc.

[3] Aurix tc4x sw application architecture supports next
level of automotive applications. "https://www.
infineon.com/cms/en/product/promopages/
AURIX-TC4xx-SW-Application-Architecture/".
Accessed: 2022-01-22.

[4] Concept: Classic platform flexibility. AUTOSAR Release R20-11.
[5] Esync alliance program: A multi-company initiative for ota updates

and diagnostics. "https://esyncalliance.org/". Accessed:
2022-07-01.

[6] Global automotive hypervisor market.
"https://www.globenewswire.com/
news-release/2021/08/05/2275805/0/en/
Automotive-Hypervisor-Market-to-Garner-2-03-Billion-by-2030-Allied-Market-Research.
html". Accessed: 2022-01-22.

[7] How gm’s ultifi software will change the buying and ownership
experience. "https://www.autoblog.com/2021/09/30/
ultifi-general-motors-software/". Accessed: 2021-10-
12.

[8] Remote exploitation of an unaltered passenger vehicle. Black Hat
USA (2015).

[9] Rfc 9019: A firmware update architecture for internet of things. RFC
- Informational. April 2021.

[10] Securing safety critical automotive systems. "https://
deepblue.lib.umich.edu/handle/2027.42/152321".
Accessed: 2022-01-22.

[11] Software updates. "https://www.tesla.com/support/
software-updates". Accessed: 2020-01-22.

[12] Specification of key manager. AUTOSAR Release 4.4.2.
[13] The update framework: A framework for securing software update

systems. "https://theupdateframework.io/". Accessed:
2022-07-01.

[14] Upstream security global automotive cybersecurity report 2021. Up-
stream Security Ltd.

[15] Uptane framework: Securing software updates for automobiles.
"https://uptane.github.io/". Accessed: 2020-11-22.

[16] Tcg guidance for secure update of software and firmware on embedded
systems. TCG, 2020.

[17] M. Baza, M. Nabil, N. Lasla, K. Fidan, M. Mahmoud, and M. Ab-
dallah. Blockchain-based firmware update scheme tailored for au-
tonomous vehicles. In 2019 IEEE Wireless Communications and
Networking Conference (WCNC), pages 1–7, 2019.

[18] R. Bielawski, R. Gaynier, D. Ma, S. Lauzon, and A. Weimerskirch.
Cybersecurity of firmware updates. Technical report, 2020.

[19] Daniel Bogdan, Razvan Bogdan, and Mircea Popa. Delta flashing of an
ecu in the automotive industry. In 11th IEEE International Symposium
on Applied Computational Intelligence and Informatics. IEEE, 2016.

[20] A. Boudguiga, N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel,
A. Roger, and R. Sirdey. Towards better availability and accountability
for iot updates by means of a blockchain. In 2017 IEEE European
Symposium on Security and Privacy Workshops (EuroS PW), pages
50–58, 2017.

[21] Gerth Stølting Brodal and Gabriel Moruz. Skewed binary search trees.
In Yossi Azar and Thomas Erlebach, editors, Algorithms – ESA 2006,
pages 708–719, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[22] O. Burkacky, J. Deichmann, B. Klein, K. Pototzky, and G. Scherf.
Cybersecurity in automotive: Mastering the challenge. McKinsey &
Company, Inc., 2020.

[23] S. Choi and J. Lee. Blockchain-based distributed firmware update
architecture for iot devices. IEEE Access, 8:37518–37525, 2020.

[24] A. Ghosal, S. Halder, and M. Conti. Stride: Scalable and secure over-
the-air software update scheme for autonomous vehicles. In ICC 2020
- 2020 IEEE International Conference on Communications (ICC),
pages 1–6, 2020.

[25] I. Hossain, S. M. Mahmud, and S. Shanker. Analysis of a secure
software upload technique in advanced vehicles using wireless links. In
IEEE Intelligent Transportation Systems Conference, page 1010–1015.
IEEE, 2007.

[26] Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld,
and Aziz Mohaisen. XMSS: eXtended Merkle Signature Scheme. RFC
8391, 2018.

[27] Shimin Jing, Xin Zheng, and Zhengwen Chen. Review and investiga-
tion of merkle tree’s technical principles and related application fields.
In 2021 International Conference on Artificial Intelligence, Big Data
and Algorithms (CAIBDA), pages 86–90, 2021.

[28] S. Kang, I. Chun, and W. Kim. Dynamic software updating for cyber-
physical systems. In The 18th IEEE International Symposium on
Consumer Electronics (ISCE 2014), pages 1–3, 2014.

[29] R. Kiyohara, S. Mii, M. Matsumoto, M. Numao, and S. Kurihara.
A new method of fast compression of program code for ota updates
in consumer devices. IEEE Transactions on Consumer Electronics,
55(2):812–817, 2009.

[30] Leslie Lamport. Constructing digital signatures from a one way
function. 2016.

[31] B. Lee and J.-H Lee. Blockchain-based secure firmware update for
embedded devices in an internet of things environment. pages 1152–
1167. J. Supercomput, 2016.

[32] Xueping Liang, Sachin Shetty, Deepak Tosh, Charles Kamhoua, Kevin
Kwiat, and Laurent Njilla. Provchain: A blockchain-based data
provenance architecture in cloud environment with enhanced privacy
and availability. In 2017 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pages 468–477,
2017.

[33] K. Mansour, W. Farag, and M. ElHelw. Airodiag: a sophisticated
tool that diagnoses and updates vehicles software over air. In IEEE
International Electric Vehicle Conference, pages 1–7. IEEE, 2012.

[34] K. Mayilsamy, N. Ramachandran, and V. S. Raj. An integrated
approach for data security in vehicle diagnostics over internet protocol
and software update over the air. Computers & Electrical Engineering,
page 578–593, 2018.

[35] Ralph C. Merkle. A digital signature based on a conventional encryp-
tion function. In Advances in Cryptology - CRYPTO ’87, A Conference
on the Theory and Applications of Cryptographic Techniques, Santa
Barbara, California, USA, August 16-20, 1987, Proceedings, volume
293 of Lecture Notes in Computer Science, pages 369–378. Springer,
1987.

[36] D. K. Nilsson and U. E. Larson. Secure firmware updates over
the air in intelligent vehicles. In IEEE International Conference on
Communications Workshops, page 380–384. IEEE, 2008.

[37] Joydeep Rakshit and Kartik Mohanram. Assure: Authentication
scheme for secure energy efficient non-volatile memories. In 2017
54th ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1–6, 2017.

[38] K. Ryozo, M. Satoshi, M. Mitsuhiro, N. Masayuki, and K. Satoshi.
New method of fast compression of program code for ota updates in
consumer devices. In IEEE Transactions on Consumer Electronics.

[39] Christian Schleiffer, Marko Wolf, André Weimerskirch, and Lars
Wolleschensky. Secure key management - a key feature for modern
vehicle electronics. In SAE 2013 World Congress Exhibition. SAE
International, apr 2013.

[40] M. Steger, A. Dorri, S. S. Kanhere, K. Romer, R. Jurdak, and
M. Karner. Secure wireless automotive software updates using
blockchains: A proof of concept. In 22nd International Forum on
Advanced Microsystems for Automotive Applications, page 137–149,
2018.

[41] Bjoern Steurich, Klaus Scheibert, Axel Freiwald, and Martin Klimke.
Feasibility study for a secure and seamless integration of over the air
software update capability in an advanced board net architecture. In
SAE Technical Paper. SAE International, 2016.

[42] S. Stević, V. Lazić, M. Z. Bjelica, and N. Lukić. Iot-based software
update proposal for next generation automotive middleware stacks. In
2018 IEEE 8th International Conference on Consumer Electronics -
Berlin (ICCE-Berlin), 2018.

[43] N. Suzuki, T. Hayashi, and R. Kiyohara. Data compression for soft-
ware updating of ecus. In 2019 IEEE 23rd International Symposium
on Consumer Technologies (ISCT), pages 304–307, 2019.

[44] A. Yohan and N. Lo. An over-the-blockchain firmware update
framework for iot devices. In 2018 IEEE Conference on Dependable
and Secure Computing (DSC), pages 1–8, 2018.

[45] Alexander Zeeb. Autosar classic platform flexibility managing the
complexity of distributed embedded software development : Invited
talk. In 2021 IEEE 18th International Conference on Software
Architecture Companion (ICSA-C), pages 167–167, 2021.

[46] Yu Zou and Mingjie Lin. Fast: A frequency-aware skewed merkle tree
for fpga-secured embedded systems. In 2019 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 326–331, 2019.

"https://www.infineon.com/cms/en/product/promopages/AURIX-TC4xx-SW-Application-Architecture/"
"https://www.infineon.com/cms/en/product/promopages/AURIX-TC4xx-SW-Application-Architecture/"
"https://www.infineon.com/cms/en/product/promopages/AURIX-TC4xx-SW-Application-Architecture/"
"https://esyncalliance.org/"
"https://www.globenewswire.com/news-release/2021/08/05/2275805/0/en/Automotive-Hypervisor-Market-to-Garner-2-03-Billion-by-2030-Allied-Market-Research.html"
"https://www.globenewswire.com/news-release/2021/08/05/2275805/0/en/Automotive-Hypervisor-Market-to-Garner-2-03-Billion-by-2030-Allied-Market-Research.html"
"https://www.globenewswire.com/news-release/2021/08/05/2275805/0/en/Automotive-Hypervisor-Market-to-Garner-2-03-Billion-by-2030-Allied-Market-Research.html"
"https://www.globenewswire.com/news-release/2021/08/05/2275805/0/en/Automotive-Hypervisor-Market-to-Garner-2-03-Billion-by-2030-Allied-Market-Research.html"
"https://www.autoblog.com/2021/09/30/ultifi-general-motors-software/"
"https://www.autoblog.com/2021/09/30/ultifi-general-motors-software/"
"https://deepblue.lib.umich.edu/handle/2027.42/152321"
"https://deepblue.lib.umich.edu/handle/2027.42/152321"
"https://www.tesla.com/support/software-updates"
"https://www.tesla.com/support/software-updates"
"https://theupdateframework.io/"
"https://uptane.github.io/"

	INTRODUCTION
	Background
	Software Architecture - New trends
	Software-over-the-air Overview
	SOTA Update Threats

	SOTA Process in Automotive
	Existing Software Update Solutions
	Challenges of existing solutions

	Proposed Solution
	CONCLUSION
	References

