MARVELL

x(

SDC Constraint Automation for Interface IP using Generative Al

Authors:

Patricia Fong, Marvell Technology, 5488 Marvell Lane, Santa Clara, CA pfong@marvell.com

Jeanne Trinko Mechler, Marvell Technology, 128 Lakeside Avenue, Burlington, VT jmechler@marvell.com
Lukas Pettersson, Marvell Technology, 5488 Marvell Lane, Santa Clara, CA Ipettersson@marvell.com
Nicholas Hella, Marvell Technology, 128 Lakeside Avenue, Burlington, VT nhella@marvell.com

Roland Chen, Marvell Technology, 5488 Marvell Lane, Santa Clara, CA rochen@marvell.com

Abstract: This paper describes a method to automate the generation of Synopsys Design Constraints (SDC) for interface
IP in VLSI chip design using Generative Al. The goals of the approach are to improve accuracy, reduce human error, and
streamline the design process. Embedded IP blocks, such as SerDes, DDR, HBM, and USB, have design specifications
containing numerous parameters per configuration. These IP require accurate SDC Tcl code to define timing
requirements during synthesis and physical implementation. SoC chips can have hundreds of lanes of interface IP
requiring thousands of lines of SDC. Comprehensive SerDes, such as Marvell's COMPHY, support multiple standards,
including Ethernet and PCle, as well as test modes. SoCs may have interface IP developed and licensed from multiple
vendors with differing integration and timing specifications. SerDes specifications and integration guidelines number
hundreds of pages in multiple documents. The timing related parameters are dependent on SoC design configurations,
and include specified and supported frequencies with clock uncertainty, transition times, and special tests such as skew
checks. This paper describes a Generative-Al method which was used to create: 1) SDC Tcl constraints from multiple
information sources 2) SDC template for specific IP and 3) human language text documentation from the SDC describing
the design configuration. The text documentation can be used for SoC design reviews and to improve IP specifications.
This allows for higher yield, faster SerDes integration, faster SoC development time, and first-time-right SoCs. The
Generative Al process is demonstrated on 56G SerDes Ethernet and PCle configurable SerDes macros on a 5nm SoC.

Outline: Section 1 describes the motivation for automating SDC constraints for interface IP. Section 2 describes the data
inputs and outputs to the Generative Al framework. Section 3 describes the RAG-based Generative Al framework and
architecture used for the SDC Creator. Section 4 demonstrates SDC Creator input prompts and output results using
Marvell's 56G SerDes configured for a specific chip design. Section 5 provides a summary.

1.0 Motivation: Comprehensive SerDes interface IP designs support multiple standards, such as Ethernet and PCle, in
addition to test functionality. VLSI chips can have hundreds of lanes of SerDes and various interface IP such as DDR
memory physical interface (PHY), die-to-die interfaces, USB PHYs, and HBM (high bandwidth memory) PHYs. Each of
these embedded IP blocks have their own design specifications, databooks, or user guides containing numerous timing
parameters per configuration and require accurate SDC constraints for all steps in the design flow. Timing information
can exist in documentation by function, by mode such as system function mode or manufacturing test mode, tables of
pin descriptions, or a dedicated timing section. The various documentation contains information such as frequency in
various modes, which must be converted into time in picoseconds or nanoseconds, with appropriate clock uncertainty,
required transition times, and other special tests such as skew checks. SDC constraints for a chip comprise many
thousands of lines of code and the incorrect or lack of SDC constraints would lead to improperly timed paths that can
result in non-functionalsilicon and an impact costing millions of dollars. Industry wide, 15-20% of chip designs are taped-
out again with design corrections due to timing/functional errors.

Developers of interface IP are experienced analog designers but may not have experience with integrating this interface
IP into a VLSI SoC design. In addition, with chiplet-based architectures on multi-die packages, the quantity of SDC
constraints is multiplied and the ability to ensure accuracy becomes even more complex.

October 23,2024 © 2024 Marvell. All rights reserved Page 1 of 10

J*(| MARVELL

2.0 Data Inputs and Outputs:

Figure 1 shows a flow chart of how SDC Creator uses Generative Al to create SDC for SoC timing. The first input, Human
Language Documentation, includes many documents with text paragraphs and tables. This documentation specifies the
allowable clock frequencies, clock uncertainty, exceptions, and required additional timing tests. The second input is the
SDC template, which is optional and may not exist. Occasionally, a generic SDC template with variables is provided with
the IP. Since IPs have a wide range of usages and are human generated, the SDC template can be error prone, lack
important details, or have an excess of information for all usages of the IP. The template SDC is not configured for the
mode usage, frequency and design detail, and furthermore, specifications for pins and clocks are included that may not
be required for a specific chip application. The template needs to be accurately customized for each chip design by the
timing engineer. The third input category into the Generative Al is Design Information ranging from sign-off derates and
margins, which accommodate yield and lifetime considerations, to the specific usage of the IP on the SoC. This includes
settings of registers, usage, frequencies of clocks, and environmental information, such as process, voltage, and
temperature.

Figure 1: Method of automating SDC constraints of interface IP using Generative Al

With the three inputs into the Generative Al, SDC Creator can generate SDC Tcl code based on the SoC Design
configuration information, the template SDC (if available), and IP documentation regarding timing and usage. Usage
modes can be set, clocking frequencies can be translated to periods to create clocks, variations in the clock can be
translated to uncertainties on the clock signal, clock relationships can be inferred, exceptions can be defined based on
register settings, and skew checks can be created between signals. If the SDC is incomplete or incorrect, then the IP

October 23,2024 © 2024 Marvell. All rights reserved Page 2 of 10

1

MARVELL

documentation needs to be reviewed and improved for completeness and accuracy. Figure 2 shows the flow chart for
SDC Creator to create an SDC template.

Figure 2: Method of automated SDC Template of interface IP using Generative Al

Config Files:

Clock Configuration files for each instance of an IP (such as 56G SerDes) are extracted from the design specifications. The
period for each clock is specified for the chip design configuration. All possible clocks are listed in the clock configuration
file, however, those with 0 period specified are unused in the specific chip design. SDC Creator is prompted to check that
the period and uncertainty of the clocks are within the specified range as listed in the documentation. In addition to
clock config files, design config files contain hierarchy instance names, the number of ports, and other information for a
given chip. An example of a Clock Config CSV file is shown in Figure 3.

Figure 3: Example of Clock Config CSV for a specific hierarchy instance of Marvell 56G SerDes

October 23,2024 © 2024 Marvell. All rights reserved Page 3 of 10

x(

MARVELL

3.0 RAG-based Generative Al framework: Figure 4 and Figure 5 show the Al Platform and RAG Architecture which were
used in the development of the SDC Creator tool. The platform resides on a virtual private cloud and uses Langchain and
Python frameworks.

Figure 4: SDC Creator Al Platform

SDC Creator utilizes a Retrieval Augmented Generation (RAG) model, illustrated in Figure 5. The RAG model consumes
information from internal sources to create a vector database, which is a library of information. When the RAG model is
asked a question through the prompt, the model uses one or more retrievers to get chunks of relevant data from this
vector database based on similarity search of the question to the library. Both the retrieved chunks of data, known as
context, and the question are sent to the LLM to complete the response.

Figure 5: Flow Chart of RAG Model

The RAG model for SDC Creator reads configuration files with design information. A curated prompt is created through
prompt engineering, as shown in Figure 5. Using this prompt and chaining Large Language Model (LLM) calls, the LLM
creates SDC code based on the config file. The config data is split and converted into vector databases using LLM
embeddings, which interpret the data. These embeddings and vector databases, combined with retrievers, extract
valuable insights from the input data for the model's response. This retrieved information provides context for the
prompt, guiding the model to produce SDC code. The model and vector database parameters can be tuned separately for
optimal performance. Curated prompt engineering enhances response performance.

4.0 SDC Creator input prompts and output results: Figure 6 provides a usage flowchart of SDC Creator. The user
interacts with the SDC Creator through a command line interface. The config files are provided as input, along with LLM

October 23,2024 © 2024 Marvell. All rights reserved Page 4 of 10

x(

MARVELL

prompts and the user is prompted to ask a question. Data is queried from the vector database using a similarity search,
adding chunks of relevant data to the prompt. The prompt, data, and user request are sent to the LLM to complete the
response. The chain of calls to the LLM generates syntactically correct and commented SDC code which can be
implemented directly from the response. An example of an LLM Model prompt is shown in Figure 7.

Figure 6: SDC Creator Usage Flowchart

Figure 7: Example of LLM Model Prompt

* You are a Senior Timing Engineer responsible for writing the SDC (synopsys desigh constraints) code for
IP.

* You know EVERYTHING about the TCL language and SDC (Synopsys Design Constraints) and always
have correct syntax.

* Documentation will be provided to aid your answers and you must reference these documents in your
reponse.

* You are working on a specific IP (intellectual property) called COMPHY, this comphy has two modes,
SerDes and Ethernet, along with more configuration that the user may give you in their question.

Here are the rules for the response:
- IGNORE CLOCKS WITH 0 PERIOD VALUE PLEASE !
- Don't include references or justification for your response
Use this clock configuration CSV context to support your answer:
{sdc_clock_config_context}
Answer ONLY this question in your response:

{question}

The automation process for generating the SDC'’s clock and uncertainty commands using the RAG model can be
described in three distinct steps, as depicted in Figure 8. In the first step, the user queries the LLM for pertinent
information from the clock configuration CSV source data. The model is designed to utilize a retriever linked to the clock

October 23,2024 © 2024 Marvell. All rights reserved Page 5 of 10

J*(| MARVELL

configuration vector database to source context information for the response. This response is further guided by an LLM
prompt. See Figure 9 for the Step 1 response.

In the second step, the user queries the model to generate the ‘create_clock™ and “create_generated_clock™ SDC
commands for each clock identified in the initial response. Here, the response for this second query is produced using a
large language model object that sources context through a retriever connected to the design configuration CSV vector
database. Consequently, the response from the initial query is linked to a secondary internal prompt to ensure the
relevant clock configuration CSV data context is propagated to the model. This secondary internal prompt additionally
allows for further refinement of the response, specifically for the purpose of generating the “create_clock™ and
‘create_generated_clock™ SDC commands. The response is then generated and returned to the user (see Figure 10).

In the third and final step, the user queries the model to generate the ‘set_clock_uncertainty” SDC commands for each
clock mentioned in the initial response. Unlike the previous steps, the response for this third query is delivered using a
large language model object that is not associated with any retriever or vector database. Like the second query, the
response from the initial query is chained to a third internal prompt that guides the model in generating the
‘set_clock_uncertainty’ commands. Subsequently, theresponseis generated and provided to the user (see Figure 11). By
concatenating the responses from the second and third queries, the final SDC output is accomplished. This process
involves the clock configuration CSV (previously illustrated in Figure 3), which is broken down into a vector database. It
includes querying the large language model to reference unique clock names and relevant information and then utilizing
the responses to create the “create_clock™ and “create_generated clock® commands. SDC generation for this example
takes less than two minutes. This is a tremendous speed up over manual SDC creation which takes many hours.

Figure 8: Three Step Chaining Process using LLM to Obtain SDC

October 23,2024 © 2024 Marvell. All rights reserved Page 6 of 10

1

MARVELL

Figure 9: Output of Response 1

Clock Details:
1. PIN_CLK100M_125M_SIDE_A

- Period: 10000 ps

- Slow Uncertainty: 30 ps

- Typical Uncertainty: 50 ps
2. PIN_CLK100M_125M_SIDE_B

- Period: 10000 ps

- Slow Uncertainty: 30 ps

- Typical Uncertainty: 50 ps
3. AUX_CLK

- Period: 2000 ps

- Slow Uncertainty: 30 ps

- Typical Uncertainty: 50 ps
4. PIPE_TXCLK_OUT

- Period: 1000 ps

- Slow Uncertainty: 30 ps

- Typical Uncertainty: 50 ps
5. PIPE_SCLK_OUT

- Period: 20000 ps

- Slow Uncertainty: 30 ps

- Typical Uncertainty: 50 ps
6. PIN_TXCLK_ALIGN_IN_REF

- Period: 500 ps

- Slow Uncertainty: 30 ps

- Typical Uncertainty: 50 ps

Figure 10: Example of “create_clock” and “create_generated_clock” output from Response 2

PIN CLK100M 125M SIDE A

create_clock -name PIN CLKI1OOM 125M SIDE A -period 10000 -waveform {0 5000} [get pins

u chipname core/u chipname slice host i0/u chipname slice host i/u fb nic pcie ss/u pcie subsys wrap/u comphy wr
ap/u WRAP COMPHY 56G PIPE5 X4 4PLL/HC/PIN CLK100M 125M SIDE A]

create_generated_clock -name PIN CLK1O0OM_125M SIDE_A GEN -divide by 1 -source [get_pins
u chipname core/u chipname slice host i0/u chipname slice host i/u fb nic pcie ss/u pcie subsys wrap/u comphy wr
ap/u WRAP COMPHY 56G PIPE5 X4 4PLL/HC/PIN CLK100M 125M SIDE A]

PIN CLK10OM 125M SIDE B

create clock -name PIN CLK100M 125M SIDE B -period 10000 -waveform {0 5000} [get pins

u_chipname core/u chipname slice host i0/u chipname slice host i/u fb nic pcie ss/u pcie subsys wrap/u comphy wr
ap/u WRAP COMPHY 56G PIPES X4 4PLL/HC/PIN CLK100M 125M SIDE B]

create_generated_clock -name PIN_CLKI10OM_ 125M SIDE_B GEN -divide by 1 -source [get_pins
u chipname core/u chipname slice host 10/u chipname slice host i/u fb nic pcie ss/u pcie subsys wrap/u comphy wr
ap/u WRAP COMPHY 56G PIPE5S X4 4PLL/HC/PIN CLK100M 125M SIDE B]

AUX _CLK

create clock -name AUX CLK -period 2000 -waveform {0 1000} [get pins

u_chipname core/u chipname slice host i0/u chipname slice host i/u fb nic pcie ss/u pcie subsys wrap/u_comphy wr
ap/u WRAP COMPHY 56G PIPE5 X4 4PLL/HC/AUX CLK]

create generated clock -name AUX CLK GEN -divide by 1 -source [get pins
u_chipname core/u chipname slice host i0/u chipname slice host i/u fb nic pcie ss/u pcie subsys_wrap/u_comphy wr
ap/u WRAP COMPHY 56G PIPE5 X4 4PLL/HC/AUX CLK]

PIPE_TXCLK OUT

create clock -name PIPE TXCLK OUT -period 1000 -waveform {0 500} [get pins

u_chipname core/u chipname slice host i0/u chipname slice host i/u fb nic pcie ss/u pcie subsys wrap/u_ comphy wr
ap/u WRAP COMPHY 56G PIPE5 X4 4PLL/HC/PIPE TXCLK OUT]

create generated clock -name PIPE TXCLK OUT GEN -divide by 1 -source [get pins

u_chipname core/u chipname slice host i0/u chipname slice host i/u fb nic pcie ss/u pcie subsys wrap/u_comphy wr
ap/u WRAP COMPHY 56G PIPE5 X4 4PLL/HC/PIPE TXCLK OUT]

PIPE_SCLK OUT
October 23,2024 © 2024 Marvell. All rights reserved Page 7 of 10

1

MARVELL

create clock -name PIPE SCLK OUT -period 20000 -waveform {0 10000} [get pins

u _chipname core/u chipname slice host i0/u chipname slice host i/u fb nic pcie ss/u pcie subsys wrap/u comphy wr

ap/u WRAP COMPHY 56G PIPE5 X4 4PLL/HC/PIPE SCLK OUT]

create generated clock -name PIPE SCLK OUT GEN -divide by 1 -source [get pins

u_chipname core/u chipname slice host i0/u chipname slice host i/u fb nic pcie ss/u pcie subsys wrap/u_comphy wr

ap/u WRAP COMPHY 56G PIPES5 X4 4PLL/HC/PIPE SCLK OUT]

PIN_TXCLK ALIGN IN REF
create clock -name PIN TXCLK ALIGN IN REF -period 500 -waveform {0 250} [get pins

u _chipname core/u chipname slice host i0/u chipname slice host i/u fb nic pcie ss/u pcie subsys wrap/u_comphy wr

ap/u WRAP COMPHY 56G PIPES X4 4PLL/HC/PIN TXCLK ALIGN IN REF]

create generated clock -name PIN TXCLK ALIGN IN REF GEN -divide by 1 -source [get pins

u_chipname core/u chipname slice host i0/u_chipname slice host i/u fb nic pcie ss/u pcie subsys wrap/u_comphy wr

ap/u WRAP COMPHY 56G PIPE5 X4 4PLL/HC/PIN TXCLK ALIGN IN REF]

Figure 11: Generate “set_clock_uncertainty” output from Response 3

PIN CLK100M 125M SIDE A

set clock uncertainty -setup 30 -fall from [get clocks PIN CLK100M 125M SIDE A] -rise to [get clocks

PIN CLK100M 125M SIDE A]

set clock uncertainty -setup 50 -rise from [get clocks PIN CLK100M 125M SIDE A] -fall to [get clocks

PIN CLK100M 125M SIDE A]

set clock uncertainty -hold 30 -fall from [get clocks PIN CLK1OOM 125M SIDE A] -rise to [get clocks

PIN CLK100M 125M SIDE A]

set clock uncertainty -hold 50 -rise from [get clocks PIN CLKIOOM 125M SIDE A] -fall to [get clocks

PIN CLK100M 125M SIDE A]

PIN CLK100M_125M SIDE_B

set _clock uncertainty -setup 30 -fall from [get clocks PIN CLK100M 125M SIDE B] -rise to [get clocks

PIN CLK10OM 125M SIDE B]

set clock uncertainty -setup 50 -rise from [get clocks PIN CLK100M 125M SIDE B] -fall to [get clocks

PIN CLK100M 125M SIDE B]

set clock uncertainty -hold 30 -fall from [get clocks PIN CLKIOOM 125M SIDE B] -rise to [get clocks

PIN CLK100M 125M SIDE_B]

set clock uncertainty -hold 50 -rise from [get clocks PIN CLK1OOM 125M SIDE B] -fall to [get clocks

PIN CLK100M 125M SIDE B]

AUX CLK

set clock uncertainty -setup 30 -fall from [get clocks AUX CLK] -rise to [get clocks AUX CLK]

set clock uncertainty -setup 50 -rise from [get clocks AUX CLK] -fall to [get clocks AUX CLK]

set _clock uncertainty -hold 30 -fall from [get clocks AUX CLK] -rise to [get clocks AUX CLK]

set clock uncertainty -hold 50 -rise from [get clocks AUX CLK] -fall to [get clocks AUX CLK]

PIPE_TXCLK OUT

set _clock uncertainty -setup 30 -fall from [get clocks PIPE TXCLK OUT] -rise to [get clocks PIPE TXCLK OUT]
set clock uncertainty -setup 50 -rise from [get clocks PIPE TXCLK OUT] -fall to [get clocks PIPE TXCLK OUT]
set clock uncertainty -hold 30 -fall from [get clocks PIPE TXCLK OUT] -rise_to [get clocks PIPE TXCLK OUT]
set clock uncertainty -hold 50 -rise from [get clocks PIPE TXCLK OUT] -fall to [get clocks PIPE TXCLK OUT]
PIPE_SCLK_OUT

set clock uncertainty -setup 30 -fall from [get clocks PIPE SCLK OUT] -rise to [get clocks PIPE SCLK OUT]
set clock uncertainty -setup 50 -rise from [get clocks PIPE SCLK OUT] -fall to [get clocks PIPE SCLK OUT]
set_clock uncertainty -hold 30 -fall from [get clocks PIPE SCLK OUT] -rise to [get clocks PIPE SCLK OUT]
set clock uncertainty -hold 50 -rise from [get clocks PIPE SCLK OUT] -fall to [get clocks PIPE SCLK OUT]
PIN_TXCLK ALIGN_ IN REF

set clock uncertainty -setup 30 -fall from [get clocks PIN TXCLK ALIGN IN REF] -rise to [get clocks

PIN TXCLK ALIGN IN REF]

set clock uncertainty -setup 50 -rise from [get clocks PIN TXCLK ALIGN IN REF] -fall to [get clocks

PIN TXCLK ALIGN IN REF]

set clock uncertainty -hold 30 -fall from [get clocks PIN TXCLK ALIGN IN REF] -rise to [get clocks

PIN TXCLK ALIGN IN REF]

set clock uncertainty -hold 50 -rise from [get clocks PIN TXCLK ALIGN IN REF] -fall to [get clocks

PIN TXCLK ALIGN IN REF]

October 23,2024 © 2024 Marvell. All rights reserved Page 8 of 10

J*(| MARVELL

The set_clock_group commands and set_multicycle_path (referred to at the bottom of Figure 1) are generated with an
analogous approach. The Clock Config and Design Config files’ vector databases and RAG retrievers together with
prompts give SDC Creator sufficient information to generate the SDC commands.

Figure 12 illustrates the method of how the generated SDC will use Generative Al to translate complete SDC Tcl into
human language for design review for accuracy. The user can review the Al output to verify the quality of the SDC, and
therefore, verify that the initial set of documentations were accurate and sufficient to provide a complete set of SDC and

to have an accurate timing environment. This can be used in new user training, design reviews, and further clarify
existing IP documentation.

Figure 12: Flow chart of the method of converting Al-generated SDC to human language description to
be compared against the existing documentation for design review

October 23,2024 © 2024 Marvell. All rights reserved Page 9 of 10

1

MARVELL

In Figure 13, the Generative Al was able to extract all known information about the clock named CMO_CLK_RATE_1 Oin
an organized format from a well commented, thorough SDC, with references to both the SDC and the databook. This can

be used for the SDC constraint accuracy review.

Figure 13: Design Review Using Trained LLM with Comprehensive SDC Tcl with Comments

Prompt:
From this Tcl SDC, provide information about CMO_CLK_RATE1 O

Answer:
Here is some information about CMO_CLK_RATE1_O:

o Definition: CMO CLK RATE1 O is an output clock pin of the PHY that corresponds to the internal pin
AFE_CMO_CLK PLL. Itis one of the important PHY output clock domains where data may be timed
synchronously.

e Frequency: The frequency of CMO_CLK_RATE1_O is determined by the parameter freq_ratel, which is set
according to the design specification and the latest databook. For example, if the data rate is 16 Gbps and the
data width is 32 bits, then freq ratel =500 MHz.

o Waveform: The waveform of CMO_CLK_RATE1_O is defined by its period and duty cycle. The period is the
inverse of the frequency, and the duty cycle is the fraction of the period the clock signal is high. The minimum
and maximum duty cycle values are 0.40 and 0.60, respectively, as specified in the databook.

e Uncertainty: The uncertainty of CMO_CLK_RATE1_O is the amount of variation in the arrival time of the clock
signal due to various factors such as jitter, setup and hold margin, and duty cycle distortion. The setup and hold
uncertainties are calculated by adding the margin, the clock jitter, and the duty cycle uncertainty. The clock jitter
is 0.065 ns, and the duty cycle uncertainty is half of the difference between the maximum and minimum duty
cycle values.

Summary: This paper presents a method for automatically generating chip-specific, configuration-specific SDC timing
constraints for interface IP in VLSI chip design using Generative Al. By translating human language documentation and
configuration files into precise SDC code, this technique ensures accuracy. It employs Retrieval Augmented Generation
(RAG) to retrieve relevant data from a vector database, producing contextually accurate SDC code. The importance of
timing constraints for interface IP is highlighted by the increasing use of SerDes, die-to-die IP, and multi-die packages
(2.5D, 3D), which significantly increase the required amount of SDC Tcl code.

References:

1). https://www.marvell.com/company/newsroom/marvell-first-112g-5nm-serdes-solution-scaling-cloud-data-center-

infrastructure.html

2). Constraining Designs for Synthesis and Timing Analysis, A Practical Guide to Synopsys Desigh Constraints (SDC),
Gangadharan, Sridhar and Churiwala, Sanjay, copyright 2013, Springer.

3). Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey,
siyunzhao,yuging.yang,wangzilong,zhiyuan.he,lunagqiu, liligiu}@microsoft.com, 2409.14924v1

4). Generative Al with LangChain: Build large language model (LLM) apps with Python, ChatGPT, and other LLMs,
Auffarth, Ben, copyright 2023.

5). Large Enough | Mistral Al | Frontier Al in your hands

October 23,2024 © 2024 Marvell. All rights reserved Page 10 of 10

