
Secure Management of Hyperscale Cloud Network

Accelerators
Faye Yang

Senior Hardware Systems Engineer

Microsoft

fayeyang@microsoft.com

Xiling Sun

Principal Firmware Engineer

Microsoft

xilingsun@microsoft.com

Abstract—Ensuring cloud computing security and

robustness is increasingly vital for all stakeholders in the

digital age, particularly against the backdrop of escalating

cyber threats. Network accelerators are extensively

utilized to enhance network performance within

Hyperscale cloud infrastructure. The cloud server

platforms housing the network accelerators serve as the

backbone and simultaneously become the appealing

targets for attackers aiming to compromise the server.

Creating a secure and resilient management platform for

network accelerators is fundamental to ensuring cloud

security from the ground up. This paper presents an

innovative approach to designing such a platform tailored

for 400Gb network and storage accelerators and beyond.

The design incorporates layered security strategies,

including enhancing hardware security at device level,

strengthening platform integrity, and fortifying remote

access protocols with strong certificate-based

authentication. It also proposes an advanced hardware

interface design, which serves as the physical foundation

for secure communication. These measures work together

to protect the network accelerator platform from attacks

and build trust with users and customers by providing

reliable cloud infrastructure.

Keywords—Network Accelerator Cards (NACs), Baseboard

Management Controllers (BMCs), hardware security,

platform integrity, advanced interfaces

I. INTRODUCTION

Network Accelerator Cards (NACs) and Baseboard

Management Controllers (BMCs) are crucial components

for enhancing network performance and managing cloud

server platforms within hyperscale cloud infrastructure

effectively. As illustrated in Fig.1, cloud server platform

relies heavily on BMCs for out-of-band (OOB) managing

server hardware, including CPUs and NACs. BMCs

employ unique privileged hardware interfaces to interact

with various devices and peripherals on the platform,

enabling remote monitoring, system recovery, and

firmware updates among other functions. Due to their

critical role, BMCs are prime targets for security

vulnerabilities, which can result in unauthorized access

and control over the whole server platforms. Such

vulnerabilities can go undetected and unresolved for years,

as highlighted by the “Pantsdown” [1] exposure in 2019.

Remote access makes BMCs appealing targets for

orchestrating large-scale attacks. Likewise, Network

Acceleration Cards (NACs), which enhance the speed of

network traffic processing and transmission, are often the

focus of attackers looking to intercept or alter data

streams. Current devices, interfaces, and communication

protocols within NAC platform management frequently

fail to address these security issues adequately.

BMC

CPU

PCIe
Slots

fanstorage
devices

NAC

I2C/SMBus

CPLD

eSPI/LPC

...

USB

PCIe

GPIO

JTAG
PMBus

PECI

sensors

PSU

SPI flash

USB
USB

device

RMII PHY

Serial

Out-of-Band(OOB)
Management

IPMI/Redfish

Fig. 1. High-level cloud server platform architecture

This paper presents an innovative approach that

combines layered security strategies and sophisticated

hardware interfaces to create a robust and efficient NAC

management system. In line with Microsoft's Secure

Future Initiative [2], we incorporate security into the

design stage to enhance the resilience of the platform

mailto:fayeyang@microsoft.com
mailto:xilingsun@microsoft.com

within a hyperscale cloud environment. This approach not

only tackles existing vulnerabilities but also equips cloud

server infrastructure for upcoming security threats.

II. LAYERED SECURITY STRATEGIES

 This section dives into the three essential aspects of our

layered security strategies: Firstly, enforcing hardware

and firmware security at the device level by integrating

Root-of-Trust (RoT) subsystem into device's System-on-

Chip (SoC) and establishing a trusted execution

environment (TEE) in the SoC application subsystem.

Secondly, strengthening platform integrity through

attestation with platform RoT. Thirdly, securing remote

access with robust certificate-based authentication.

A. Enforcing hardware and firmware security at device

SoC level: RoT security subsystem integration and

TEE establishment.

Modern BMC and NAC SoC usually contain

application processors, high-speed interconnect fabric,

RAM, peripherals and corresponding firmware stack that

form the application subsystems responsible for primary

operations. To build highly secure devices, it is crucial to

have a dedicated security subsystem that remains

physically separated from the application domain to

handle security-critical functions. Fig. 2 shows a

simplified model of a BMC or NAC System-on-Chip

(SoC) with an integrated RoT security subsystem.

SoC Interconnect Fabric

RoT
security

subsystem

Application
Processor(s)

RAM Flash Peripherals ...

Application subsystem

Fig. 2. Simplified model of SoC with RoT security subsystem

The RoT security subsystem typically consists of key

security hardware building blocks and firmware stack, as

illustrated in Fig. 3. At the center there is a dedicated

security processor performing critical security operations.

It also includes cryptographic engines such as a True

Random Number Generator (TRNG), AES, SHA, and

ECDSA to facilitate modern cryptographic algorithms.

The secure interconnect fabric safeguards data transfers

within SoC. Additionally, it features one-time-

programmable (OTP) memory such as eFuses to save

crucial unchangeable configuration settings, encryption

keys, security polices etc.

Crypto Engines

 Security
Processor

AES

Security
policies

eFuses

Immutable
ROM

RoT FMC

Interconnect

SHA ECDSA TRNG

SRAM

RoT RT

RoT Security Subsystem

Crypto
services

Secure boot
Secure update

Recovery

Cryptographic
device

identity

System
interface
control

Fig. 3. RoT security subsystem architectural view

RoT firmware stack running on security processors

acts as the brain for handling security-critical operations.

It generally comprises at least three layers: immutable

ROM, RoT First-Mutable-Code (FMC) and RoT Run-

time (RT). The immutable ROM contains hardwired logic

and minimal bootstrapping code that is fixed at the time of

System on Chip (SoC) manufacturing. This immutable

nature ensures that the code cannot be altered, providing a

secure foundation for the boot process. We will discuss

FMC and RT shortly.

Below are the vital roles that RoT firmware performs

to ensure the security of SoC.

1) Generates and protects an unforgeable

cryptographic device identity embedded in hardware.

Hardware cryptographic device identity is significant for

authenticating the device and ensuring secure

communication with other devices or systems. It forms

the basis of supply chain security via securely harvesting

and provisioning the device identity. Device Identifier

Composition Engine (DICE) [3], as defined by the

Trusted Computing Group (TCG), is a widely adopted

model that combines silicon characteristics with software

techniques to produce such a unique device identity.

2) Compliant with NIST 800-193 platform firmware

resiliency guidelines.[4]

Secure boot: a mechanism that ensures the integrity of

every piece of code being loaded before it is allowed to

execute by verifying the firmware's digital signature using

a securely anchored root of trust public key, maintaining

a chain of trust throughout the boot process, and revoking

previously signed firmware if it is found to be

compromised.

Secure update: a mechanism that ensures that

firmware updates are authenticated and authorized, with

the firmware image signed by a key cryptographically

bound to the device's immutable root key. The signature

is verified by RoT before programming non-volatile

storage, providing rollback protection and integrity

protection to prevent unauthorized modifications.

Secure Recovery: a mechanism that ensures a device

can return to its normal operational state by obtaining

operational images from a trustworthy source when

corruption, tampering or an unknown state is detected.

The recovery image must be authenticated by RoT before

being programmed to non-volatile storage.

3) Manage system configurations, security policies,

peripheral and interface control and hardware lifecycle

management. For instance, it can limit debugging to

authorized personnel, secure GPIO pins, set up secure

boot options, and handle memory partitioning with access

controls to protect data. This is especially important for

mitigating risks linked to permissive interfaces on BMCs.

4) Provide cryptographic services for the application

domain e.g. signing request, ensuring crypto keys remain

secure and are never exposed to the application. This will

be further discussed in later session.

One approach to implement the RoT security

subsystem on an SoC is to adapt the open-source Project

Cerberus [5] RoT solution to construct the RoT firmware

stack on SoCs equipped with all the mentioned security

hardware components. Project Cerberus provides a

strong, platform-agnostic implementation for TCG

DICE, covering firmware image validation, key manifest

management, secure firmware updates, attestation, flash

management, and more.

The main challenge with this approach lies in the

substantial investment needed from silicon vendors to

develop and implement security hardware components

within an SoC from the ground up. Additionally, the

significant effort required to port and integrate Cerberus

RoT onto a particular SoC presents a challenge for

scalability across multiple diverse SoCs.

To tackle these issues, we strongly recommend the

integration of the industry-standard open-source RoT

solution Caliptra into BMC and NAC SoCs as security

subsystem during design phase. Caliptra [6] is fully open

source, providing transparency from the hardware RTL to

the firmware stack. This initiative and community are

progressing steadily, enabling state-of-the-art features

such as streaming boot, post-quantum cryptography

(PQC) support.

 Another device-level security strategy is to establish a

Trusted Execution Environment (TEE) within the SoC

application subsystem. This can be achieved by utilizing

hardware-based security features like Arm® TrustZone®

[7] with open-source ARM trusted firmware stack to

create a secure, isolated environment for running trusted

applications (TAs) separately from the main operating

system and other applications. One popular TA is the

firmware-based Trusted Platform Module (fTPM) that

implements TPM functionality within the TEE. An open-

source reference implementation for fTPM [8], along with

integration examples, is available. This method is ideal

for both BMC and NAC SoC application subsystems to

execute sensitive tasks like cryptographic key

management, secure storage, attestation measurements,

and user authentication.

B. Strengthening platform integrity through attestation

with platform RoT.

Platform RoT is a foundational security component

that ensures the integrity and authenticity of the cloud

server platform. It is powered on before any other system

components and needs to be independent and tolerant of

resets, enabling updates and resets without impacting the

platform.

A key aspect of maintaining platform integrity is

having the platform RoT verify all devices during both

boot and runtime, regularly attesting to all devices in the

system. Fig. 4 shows the simplified platform attestation

workflow in the cloud infrastructure. A device subject to

attestation by the platform RoT is referred to as an Active

Component Root-of-Trust (AC-RoT). For each AC-RoT

enabled on the platform, the Platform RoT performs the

following steps:

1) Validate the identity: platform RoT validates the

device identity of the AC-RoT using the device’s identity

certificate chain.

2) Authentication challenge: it confirms that each

device can use the private authentication key linked to the

verified certificate chain by issuing a challenge to each

device.

3) Measurement verification: platform RoT extracts

the digitally signed measurements reported by the

AC-RoT and verifies them against reference

measurements.

4) Acceptance or remediation: based on the

verification results, the Platform RoT either accepts the

device or initiates a remedial action.

NAC

Platform
RoT

CPU

AC-RoT

AC-RoT

GPU

AC-RoT

SSD

AC-RoT

Attestation
Client

Attestation
service

Verify cert chain

Platform attestation
evidence

Permission to join
production

Challenge
protocol

BMC

AC-RoT

Cloud server platform

Fig. 4. Simplified platform attestation workflow

Platform RoT supports multiple attestation protocols

to enable the remote attestation of the AC-RoTs, such as

Project Cerberus Challenge protocol [9] and the DMTF’s

Secure Protocol and Data Model (SPDM) protocol [10]

Upon successful verification, the Platform RoT securely

conveys platform attestation evidence to the Data Center

Management plane. This evidence is used to permit server

node entry into the production environment, ensuring

compliance with established security policies and thereby

enhancing the overall integrity of the platform.

C. Securing remote access protocols with robust

certificate-based authentication

OpenSSH and Redfish are crucial remote access

protocols for cloud server platforms in manufacturing

setups and for out-of-band (OOB) management across

fleets. However, SSH public key-based authentication

presents several limitations. The main issues include

scalability challenges in managing a large number of keys

and connections. Key management becomes complicated

due to the difficulties in distributing, rotating, and

revoking keys, along with the need to secure numerous

keys, which introduces vulnerabilities. Moreover, the

Trust-On-First-Use (TOFU) model is insecure as it

establishes trust on the initial connection, increasing risks

if the first key is compromised. Enhancing these protocols

with certificate-based authentication substantially

improves security and efficiency. Employing certificates

issued by a trusted Certificate Authority (CA) mitigates

the vulnerabilities associated with password-based

authentication and reduces the risk of unauthorized

access.

We developed a prototype enabling OpenSSH

certificate-based authentication backed by BMC RoT

subsystem, providing an additional layer of security to the

standard process. The integrated architecture is shown in

Fig. 5. The highlight is the isolation of the private key

within the RoT subsystem, where the signing request for

key exchange hash during OpenSSH session

establishment is routed to the hardware RoT subsystem

via the PKCS#11 provider library. In this case, RoT

subsystem is the cryptographic service provider to

application subsystem mentioned earlier. Furthermore,

the SSH certificate is anchored to an organizationally

trusted CA. When certificate authentication is configured

on both the client and server, it allows for password-less

login, effectively addressing the security risks related to

the username/password logins to BMC and TOFU model.

Linux Kernel

ARM Hardware

UBoot Firmware

RoT PKCS#11 Provider

OpenSSH Redfish

Integrated
RoT

Signing request

BMC SoC

Application subsystem RoT subsystem

Cloud Services

Fig. 5. Integrated architecture of certificate-based auth

The prototype is scalable and extendable to NAC and

other devices with RoT subsystem integrated. Enabling

certificate-based authentication for OpenSSH and

Redfish enhances the security of remote access to the

systems, bolstering their defense against potential threats.

III. ADVANCED HARDWARE INTERFACES DESIGN

In current modern server design, BMC is usually

physical on the DC-SCM (standards-ready secure control

module) plug-in to server motherboard as shown in

Fig. 6. NAC usually connects to the server motherboard

via a PCIe slot. There are interfaces like UART/I2C/USB

between BMC and NAC for dedicated remote control,

system monitoring, firmware updates and recovery. BMC

also has the 1G ethernet PHY connecting to management

switches to the rack manager, which can push NAC’s

telemetry data to relevant databases and support out of

band control capabilities to corresponding APIs or CLIs.

Fig. 6. System view of simplified cloud server connectivity

 The UART interface usually serves as a serial port

providing out of band admin console to the SoC on the

NAC. Mainly used for debugging and diagnostics

purposes. The I2C interface is usually used for BMC to

collect critical telemetry data and monitor various

parameters/logs events from key components on the

NAC, which is crucial for thermal power and error

detection in the data center. This interface is also used for

out-of-band firmware update and recovery as well as

remote management to NAC’s RoT via utility commands

designed for secure and efficient management. The BMC

interacts with NAC’s RoT to enforce these security

policies, ensuring that only authorized firmware is

executed.

 The USB 2.0 interface usually has two functions: one

as storage allowing the BMC/Rack manager to transfer

files to and from the NAC. The other is serving as high-

speed USBvNIC communication running at 480Mbps.

Such as pushing NAC’s SEL (system event log) from

SOC to BMC, configuration file transfers, diagnostics and

telemetry data collection. Fig. 7 illustrates the detailed

interfaces between BMC and NAC on the management

platform.

Fig. 7. NAC-BMC interfaces on management platform

A. Changing USB to SGMII

 As NAC can support more and more offloading

functionalities and become increasingly crucial to

platform operations, there are various demands for BMC

to communicate with NAC cards. A SGMII interface

would be more suitable than USB 2.0 interface for next

generation server design between new DC-SCM and

NAC for the following reasons:

1) Improved speed and signal integration: Effective

bit rate of SGMII is 1.0 Gbps while USB 2.0 max data

transfer speed is only 480Mbps. SGMII uses differential

signaling, which provides better noise immunity and

signal integrity compared to USB. This makes SGMII less

susceptible to electromagnetic interference, which can be

a security advantage in environments with high electrical

noise.

2) Protocol overhead and complexity: USBvNIC

involves more protocol overhead and complexity, which

can introduce additional attack surfaces. SGMII, being a

simpler and more direct interface, reduces the potential for

vulnerabilities.

3) Data transfer security: SGMII’s use of differential

signaling and 8B/10B encoding provides inherent security

advantages by reducing the likelihood of data corruption

and interception during transmission than USB vNIC.

4) More flexibility to system design: since not all

servers support USB interface dedicated to NAC PCIe slot

and the future trend of 1 to N (NAC to hosts) or N to 1

design, SGMII could provide better performance as high

bandwidth and low latency.

Fig. 8. Advanced interfaces on NAC management platform

Overall, changing USB 2.0 to SGMII will make

connections between DC-SCM/BMC to NAC faster,

more reliable and secure. Which provides the foundation

for more offloading enablement on the NAC SoC side and

maintaining high quality monitoring and manageability at

system level.

B. Adding I3C interface

The traditional I2C interface between BMC and NAC

has carried over a lot of important tasks such as telemetry

and RoT communication between multiple endpoints on

the Network accelerator card. However, the speed of I2C

begins to show limitations for these out of band controls.

There is a need to switch or add to much higher speed I3C

interfaces. Compared to I2C, I3C can support data rates

up to about 40Mbps at a master clock of 12.5 MHz which

is significantly higher than I2C’s max speed of 400kbps.

I3C also supports dynamic addressing which allows for

more flexibility for NAC integration into different server

platforms. The other benefit of I3C is hot-join feature

which allows the responder devices to be added or

removed from the system without interrupting the bus,

which enhances the scalability of the system and

reliability when one of the responder devices goes into

error stage and potentially could hang the whole bus for

the I2C application. I3c is also backward compatible with

I2C for legacy design and devices.

Overall, I3C provides significant improvements in

speed, flexibility and compatibility, which suits more

modern applications like BMC to NAC design.

IV. EMERGING TRENDS

 The advanced hardware interfaces design is the

foundation for secured management between BMC and

NAC from various aspects of performance, security and

reliability. Firmware, software and upper agents rely on

these interfaces to do essential OOB security updates,

remote control and recovery. It will also be used for more

complex and high-density next generation server and rack

system design like 1 to N / multi-host or N to 1/multi-NIC

concepts to achieve better TCO and efficiency.

 When it comes to security, Post-Quantum

Cryptography (PQC) is on the rise, aiming to defend

against quantum computer threats by creating new

cryptographic algorithms that can withstand quantum

attacks. This shift requires updates to both software and

hardware components. The transition also means tackling

performance issues, such as heightened computational

demands and larger key sizes, which may impact system

efficiency. Moreover, ensuring compatibility with

existing protocols and systems is vital for a smooth

transition. Adopting PQC into BMC and NAC security

architecture design will enhance the long-term security of

network accelerators, protecting data and

communications from future quantum threats and making

the platform resilient and future-proof.

ACKNOWLEDGMENT

We sincerely thank Shawn Swilley, Andrew Putnam,

Vishal Soni and Bryan Kelly for their invaluable guidance

and support. Our gratitude also extends to Parvathi

Bhogaraju for her contribution on prototyping OpenSSH

certificate authentication and platform attestation.

REFERENCES

[1] “Pantsdown” BMC attack:

https://eclypsium.com/blog/qct-pantsdown-an-executive-

summary/

[2] Secure future initiative: https://www.microsoft.com/en-

us/trust-center/security/secure-future-initiative

[3] TCG DICE: https://trustedcomputinggroup.org/work-

groups/dice-architectures/

[4] NIST800-193: Platform Firmware Resiliency

Guidelines: https://csrc.nist.gov/pubs/sp/800/193/final

[5] Project Cerberus: https://github.com/Azure/Project-

Cerberus

[6] Caliptra RoT:

https://www.opencompute.org/documents/caliptra-silicon-

rot-services-09012022-pdf

[7] Arm® TrustZone®:

https://www.arm.com/technologies/trustzone-for-cortex-a

[8] Microsoft fTPM 2.0 reference implementation:

https://www.microsoft.com/en-us/research/publication/ftpm-

a-firmware-based-tpm-2-0-implementation/

[9] Project Cerberus Challenge Protocol:

https://github.com/opencomputeproject/Project_Olympus/bl

ob/master/Project_Cerberus/Project%20Cerberus%20Challe

nge%20Protocol.pdf

[10] DMTF

SPDM:https://www.dmtf.org/sites/default/files/standards/do

cuments/DSP0274_1.0.1.pdf

https://eclypsium.com/blog/qct-pantsdown-an-executive-summary/
https://eclypsium.com/blog/qct-pantsdown-an-executive-summary/
https://www.microsoft.com/en-us/trust-center/security/secure-future-initiative
https://www.microsoft.com/en-us/trust-center/security/secure-future-initiative
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://trustedcomputinggroup.org/work-groups/dice-architectures/
https://csrc.nist.gov/pubs/sp/800/193/final
https://github.com/Azure/Project-Cerberus
https://github.com/Azure/Project-Cerberus
https://www.opencompute.org/documents/caliptra-silicon-rot-services-09012022-pdf
https://www.opencompute.org/documents/caliptra-silicon-rot-services-09012022-pdf
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/
https://www.microsoft.com/en-us/research/publication/ftpm-a-firmware-based-tpm-2-0-implementation/
https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus/Project%20Cerberus%20Challenge%20Protocol.pdf
https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus/Project%20Cerberus%20Challenge%20Protocol.pdf
https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus/Project%20Cerberus%20Challenge%20Protocol.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.0.1.pdf

