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Abstract—Ensuring cloud computing security and 

robustness is increasingly vital for all stakeholders in the 

digital age, particularly against the backdrop of escalating 

cyber threats. Network accelerators are extensively 

utilized to enhance network performance within 

Hyperscale cloud infrastructure. The cloud server 

platforms housing the network accelerators serve as the 

backbone and simultaneously become the appealing 

targets for attackers aiming to compromise the server.  

Creating a secure and resilient management platform for 

network accelerators is fundamental to ensuring cloud 

security from the ground up. This paper presents an 

innovative approach to designing such a platform tailored 

for 400Gb network and storage accelerators and beyond. 

The design incorporates layered security strategies, 

including enhancing hardware security at device level, 

strengthening platform integrity, and fortifying remote 

access protocols with strong certificate-based 

authentication. It also proposes an advanced hardware 

interface design, which serves as the physical foundation 

for secure communication. These measures work together 

to protect the network accelerator platform from attacks 

and build trust with users and customers by providing 

reliable cloud infrastructure. 

Keywords—Network Accelerator Cards (NACs), Baseboard 

Management Controllers (BMCs), hardware security, 
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I. INTRODUCTION 

Network Accelerator Cards (NACs) and Baseboard 

Management Controllers (BMCs) are crucial components 

for enhancing network performance and managing cloud 

server platforms within hyperscale cloud infrastructure 

effectively. As illustrated in Fig.1, cloud server platform 

relies heavily on BMCs for out-of-band (OOB) managing 

server hardware, including CPUs and NACs. BMCs 

employ unique privileged hardware interfaces to interact 

with various devices and peripherals on the platform, 

enabling remote monitoring, system recovery, and 

firmware updates among other functions. Due to their 

critical role, BMCs are prime targets for security 

vulnerabilities, which can result in unauthorized access 

and control over the whole server platforms. Such 

vulnerabilities can go undetected and unresolved for years, 

as highlighted by the “Pantsdown” [1] exposure in 2019.  

Remote access makes BMCs appealing targets for 

orchestrating large-scale attacks. Likewise, Network 

Acceleration Cards (NACs), which enhance the speed of 

network traffic processing and transmission, are often the 

focus of attackers looking to intercept or alter data 

streams.  Current devices, interfaces, and communication 

protocols within NAC platform management frequently 

fail to address these security issues adequately.   
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Fig. 1. High-level cloud server platform architecture 

This paper presents an innovative approach that 

combines layered security strategies and sophisticated 

hardware interfaces to create a robust and efficient NAC 

management system. In line with Microsoft's Secure 

Future Initiative [2], we incorporate security into the 

design stage to enhance the resilience of the platform 
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within a hyperscale cloud environment. This approach not 

only tackles existing vulnerabilities but also equips cloud 

server infrastructure for upcoming security threats. 
 

II. LAYERED SECURITY STRATEGIES 

 This section dives into the three essential aspects of our 

layered security strategies: Firstly, enforcing hardware 

and firmware security at the device level by integrating 

Root-of-Trust (RoT) subsystem into device's System-on-

Chip (SoC) and establishing a trusted execution 

environment (TEE) in the SoC application subsystem. 

Secondly, strengthening platform integrity through 

attestation with platform RoT. Thirdly, securing remote 

access with robust certificate-based authentication. 

A. Enforcing hardware and firmware security at device 

SoC level: RoT security subsystem integration and 

TEE establishment. 

Modern BMC and NAC SoC usually contain 

application processors, high-speed interconnect fabric, 

RAM, peripherals and corresponding firmware stack that 

form the application subsystems responsible for primary 

operations. To build highly secure devices, it is crucial to 

have a dedicated security subsystem that remains 

physically separated from the application domain to 

handle security-critical functions. Fig. 2 shows a 

simplified model of a BMC or NAC System-on-Chip 

(SoC) with an integrated RoT security subsystem.   
 

SoC Interconnect Fabric

RoT 
security 

subsystem 

Application
Processor(s)

RAM Flash Peripherals ...

Application subsystem

 
Fig. 2. Simplified model of SoC with RoT security subsystem 

The RoT security subsystem typically consists of key 

security hardware building blocks and firmware stack, as 

illustrated in Fig. 3.  At the center there is a dedicated 

security processor performing critical security operations. 

It also includes cryptographic engines such as a True 

Random Number Generator (TRNG), AES, SHA, and 

ECDSA to facilitate modern cryptographic algorithms. 

The secure interconnect fabric safeguards data transfers 

within SoC. Additionally, it features one-time-

programmable (OTP) memory such as eFuses to save 

crucial unchangeable configuration settings, encryption 

keys, security polices etc. 
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Fig. 3. RoT security subsystem architectural view 

RoT firmware stack running on security processors 

acts as the brain for handling security-critical operations. 

It generally comprises at least three layers: immutable 

ROM, RoT First-Mutable-Code (FMC) and RoT Run-

time (RT).  The immutable ROM contains hardwired logic 

and minimal bootstrapping code that is fixed at the time of 

System on Chip (SoC) manufacturing.  This immutable 

nature ensures that the code cannot be altered, providing a 

secure foundation for the boot process. We will discuss 

FMC and RT shortly.  

Below are the vital roles that RoT firmware performs 

to ensure the security of SoC.  

1) Generates and protects an unforgeable 

cryptographic device identity embedded in hardware. 

Hardware cryptographic device identity is significant for 

authenticating the device and ensuring secure 

communication with other devices or systems. It forms 

the basis of supply chain security via securely harvesting 

and provisioning the device identity.  Device Identifier 

Composition Engine (DICE) [3], as defined by the 

Trusted Computing Group (TCG), is a widely adopted 

model that combines silicon characteristics with software 

techniques to produce such a unique device identity.  



2) Compliant with NIST 800-193 platform firmware 

resiliency guidelines.[4]  

Secure boot: a mechanism that ensures the integrity of 

every piece of code being loaded before it is allowed to 

execute by verifying the firmware's digital signature using 

a securely anchored root of trust public key, maintaining 

a chain of trust throughout the boot process, and revoking 

previously signed firmware if it is found to be 

compromised.  

Secure update: a mechanism that ensures that 

firmware updates are authenticated and authorized, with 

the firmware image signed by a key cryptographically 

bound to the device's immutable root key. The signature 

is verified by RoT before programming non-volatile 

storage, providing rollback protection and integrity 

protection to prevent unauthorized modifications.   

Secure Recovery: a mechanism that ensures a device 

can return to its normal operational state by obtaining 

operational images from a trustworthy source when 

corruption, tampering or an unknown state is detected. 

The recovery image must be authenticated by RoT before 

being programmed to non-volatile storage. 

3) Manage system configurations, security policies, 

peripheral and interface control and hardware lifecycle 

management. For instance, it can limit debugging to 

authorized personnel, secure GPIO pins, set up secure 

boot options, and handle memory partitioning with access 

controls to protect data. This is especially important for 

mitigating risks linked to permissive interfaces on BMCs.  

4) Provide cryptographic services for the application 

domain e.g. signing request, ensuring crypto keys remain 

secure and are never exposed to the application. This will 

be further discussed in later session. 
 

One approach to implement the RoT security 

subsystem on an SoC is to adapt the open-source Project 

Cerberus [5] RoT solution to construct the RoT firmware 

stack on SoCs equipped with all the mentioned security 

hardware components. Project Cerberus provides a 

strong,  platform-agnostic implementation for TCG 

DICE, covering firmware image validation, key manifest 

management, secure firmware updates, attestation, flash 

management, and more.  

The main challenge with this approach lies in the 

substantial investment needed from silicon vendors to 

develop and implement security hardware components 

within an SoC from the ground up. Additionally, the 

significant effort required to port and integrate Cerberus 

RoT onto a particular SoC presents a challenge for 

scalability across multiple diverse SoCs.  

To tackle these issues, we strongly recommend the 

integration of the industry-standard open-source RoT 

solution Caliptra into BMC and NAC SoCs as security 

subsystem during design phase. Caliptra [6]  is fully open 

source, providing transparency from the hardware RTL to 

the firmware stack. This initiative and community are 

progressing steadily, enabling state-of-the-art features 

such as streaming boot, post-quantum cryptography 

(PQC) support.  

 Another device-level security strategy is to establish a 

Trusted Execution Environment (TEE) within the SoC 

application subsystem. This can be achieved by utilizing 

hardware-based security features like Arm® TrustZone® 

[7] with open-source ARM trusted firmware stack to 

create a secure, isolated environment for running trusted 

applications (TAs) separately from the main operating 

system and other applications. One popular TA is the 

firmware-based Trusted Platform Module (fTPM) that 

implements TPM functionality within the TEE.  An open-

source reference implementation for fTPM [8], along with 

integration examples, is available. This method is ideal 

for both BMC and NAC SoC application subsystems to 

execute sensitive tasks like cryptographic key 

management, secure storage, attestation measurements, 

and user authentication.  

B. Strengthening platform integrity through attestation 

with platform RoT. 

Platform RoT is a foundational security component 

that ensures the integrity and authenticity of the cloud 

server platform. It is powered on before any other system 

components and needs to be independent and tolerant of 

resets, enabling updates and resets without impacting the 

platform.  

A key aspect of maintaining platform integrity is 

having the platform RoT verify all devices during both 

boot and runtime, regularly attesting to all devices in the 

system. Fig. 4 shows the simplified platform attestation 

workflow in the cloud infrastructure. A device subject to 

attestation by the platform RoT is referred to as an Active 

Component Root-of-Trust (AC-RoT).  For each AC-RoT 

enabled on the platform, the Platform RoT performs the 

following steps: 

1) Validate the identity: platform RoT validates the 

device identity of the AC-RoT using the device’s identity 

certificate chain. 

2) Authentication challenge: it confirms that each 

device can use the private authentication key linked to the 

verified certificate chain by issuing a challenge to each 

device. 

3) Measurement verification: platform RoT extracts 

the digitally signed measurements reported by the          

AC-RoT and verifies them against reference 

measurements. 



4) Acceptance or remediation: based on the 

verification results, the Platform RoT either accepts the 

device or initiates a remedial action. 
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Fig. 4. Simplified platform attestation workflow 

Platform RoT supports multiple attestation protocols 

to enable the remote attestation of the AC-RoTs, such as 

Project Cerberus Challenge protocol [9] and the DMTF’s 

Secure Protocol and Data Model (SPDM) protocol [10] 

Upon successful verification, the Platform RoT securely 

conveys platform attestation evidence to the Data Center 

Management plane. This evidence is used to permit server 

node entry into the production environment, ensuring 

compliance with established security policies and thereby 

enhancing the overall integrity of the platform. 

C. Securing remote access protocols with robust 

certificate-based authentication 

OpenSSH and Redfish are crucial remote access 

protocols for cloud server platforms in manufacturing 

setups and for out-of-band (OOB) management across 

fleets. However, SSH public key-based authentication 

presents several limitations. The main issues include 

scalability challenges in managing a large number of keys 

and connections. Key management becomes complicated 

due to the difficulties in distributing, rotating, and 

revoking keys, along with the need to secure numerous 

keys, which introduces vulnerabilities. Moreover, the 

Trust-On-First-Use (TOFU) model is insecure as it 

establishes trust on the initial connection, increasing risks 

if the first key is compromised. Enhancing these protocols 

with certificate-based authentication substantially 

improves security and efficiency. Employing certificates 

issued by a trusted Certificate Authority (CA) mitigates 

the vulnerabilities associated with password-based 

authentication and reduces the risk of unauthorized 

access. 

We developed a prototype enabling OpenSSH 

certificate-based authentication backed by BMC RoT 

subsystem, providing an additional layer of security to the 

standard process. The integrated architecture is shown in 

Fig. 5. The highlight is the isolation of the private key 

within the RoT subsystem, where the signing request for 

key exchange hash during OpenSSH session 

establishment is routed to the hardware RoT subsystem 

via the PKCS#11 provider library.  In this case, RoT 

subsystem is the cryptographic service provider to 

application subsystem mentioned earlier. Furthermore, 

the SSH certificate is anchored to an organizationally 

trusted CA. When certificate authentication is configured 

on both the client and server, it allows for password-less 

login, effectively addressing the security risks related to 

the username/password logins to BMC and TOFU model. 

Linux Kernel

ARM Hardware

UBoot Firmware

RoT PKCS#11 Provider

OpenSSH Redfish

Integrated 
RoT 

Signing request

BMC SoC

Application subsystem RoT subsystem

Cloud Services

 
Fig. 5. Integrated architecture of certificate-based auth   

The prototype is scalable and extendable to NAC and 

other devices with RoT subsystem integrated. Enabling 

certificate-based authentication for OpenSSH and 

Redfish enhances the security of remote access to the 

systems, bolstering their defense against potential threats. 



III. ADVANCED  HARDWARE INTERFACES DESIGN 

In current modern server design, BMC is usually 

physical on the DC-SCM (standards-ready secure control 

module) plug-in to server motherboard as shown in       

Fig. 6.  NAC usually connects to the server motherboard 

via a PCIe slot. There are interfaces like UART/I2C/USB 

between BMC and NAC for dedicated remote control, 

system monitoring, firmware updates and recovery. BMC 

also has the 1G ethernet PHY connecting to management 

switches to the rack manager, which can push NAC’s 

telemetry data to relevant databases and support out of 

band control capabilities to corresponding APIs or CLIs. 

 
Fig. 6. System view of simplified cloud server connectivity  

 The UART interface usually serves as a serial port 

providing out of band admin console to the SoC on the 

NAC. Mainly used for debugging and diagnostics 

purposes. The I2C interface is usually used for BMC to 

collect critical telemetry data and monitor various 

parameters/logs events from key components on the 

NAC, which is crucial for thermal power and error 

detection in the data center. This interface is also used for 

out-of-band firmware update and recovery as well as 

remote management to NAC’s RoT via utility commands 

designed for secure and efficient management. The BMC 

interacts with NAC’s RoT to enforce these security 

policies, ensuring that only authorized firmware is 

executed.  

 The USB 2.0 interface usually has two functions: one 

as storage allowing the BMC/Rack manager to transfer 

files to and from the NAC. The other is serving as high-

speed USBvNIC communication running at 480Mbps. 

Such as pushing NAC’s SEL (system event log) from 

SOC to BMC, configuration file transfers, diagnostics and 

telemetry data collection.  Fig. 7 illustrates the detailed 

interfaces between BMC and NAC on the management 

platform.  

 
Fig. 7. NAC-BMC interfaces on management platform 

A. Changing USB to SGMII   

 As NAC can support more and more offloading 

functionalities and become increasingly crucial to 

platform operations, there are various demands for BMC 

to communicate with NAC cards. A SGMII interface 

would be more suitable than USB 2.0 interface for next 

generation server design between new DC-SCM and 

NAC for the following reasons: 

1) Improved speed and signal integration: Effective 

bit rate of SGMII is 1.0 Gbps while USB 2.0 max data 

transfer speed is only 480Mbps. SGMII uses differential 

signaling, which provides better noise immunity and 

signal integrity compared to USB. This makes SGMII less 

susceptible to electromagnetic interference, which can be 

a security advantage in environments with high electrical 

noise. 

2) Protocol overhead and complexity: USBvNIC 

involves more protocol overhead and complexity, which 

can introduce additional attack surfaces. SGMII, being a 

simpler and more direct interface, reduces the potential for 

vulnerabilities.  

3) Data transfer security: SGMII’s use of differential 

signaling and 8B/10B encoding provides inherent security 

advantages by reducing the likelihood of data corruption 

and interception during transmission than USB vNIC. 

4) More flexibility to system design: since not all 

servers support USB interface dedicated to NAC PCIe slot 

and the future trend of 1 to N (NAC to hosts) or N to 1 

design, SGMII could provide better performance as high 

bandwidth and low latency. 

 
Fig. 8. Advanced interfaces on NAC management platform 



Overall, changing USB 2.0 to SGMII will make 

connections between DC-SCM/BMC to NAC faster, 

more reliable and secure. Which provides the foundation 

for more offloading enablement on the NAC SoC side and 

maintaining high quality monitoring and manageability at 

system level. 

B. Adding I3C interface 

The traditional I2C interface between BMC and NAC 

has carried over a lot of important tasks such as telemetry 

and RoT communication between multiple endpoints on 

the Network accelerator card. However, the speed of I2C 

begins to show limitations for these out of band controls. 

There is a need to switch or add to much higher speed I3C 

interfaces. Compared to I2C, I3C can support data rates 

up to about 40Mbps at a master clock of 12.5 MHz which 

is significantly higher than I2C’s max speed of 400kbps. 

I3C also supports dynamic addressing which allows for 

more flexibility for NAC integration into different server 

platforms. The other benefit of I3C is hot-join feature 

which allows the responder devices to be added or 

removed from the system without interrupting the bus, 

which enhances the scalability of the system and 

reliability when one of the responder devices goes into 

error stage and potentially could hang the whole bus for 

the I2C application. I3c is also backward compatible with 

I2C for legacy design and devices.  

Overall, I3C provides significant improvements in 

speed, flexibility and compatibility, which suits more 

modern applications like BMC to NAC design. 

IV. EMERGING TRENDS  

 The advanced hardware interfaces design is the 

foundation for secured management between BMC and 

NAC from various aspects of performance, security and 

reliability. Firmware, software and upper agents rely on 

these interfaces to do essential OOB security updates, 

remote control and recovery.  It will also be used for more 

complex and high-density next generation server and rack 

system design like 1 to N / multi-host or N to 1/multi-NIC 

concepts to achieve better TCO and efficiency.  

 When it comes to security, Post-Quantum 

Cryptography (PQC) is on the rise, aiming to defend 

against quantum computer threats by creating new 

cryptographic algorithms that can withstand quantum 

attacks. This shift requires updates to both software and 

hardware components. The transition also means tackling 

performance issues, such as heightened computational 

demands and larger key sizes, which may impact system 

efficiency. Moreover, ensuring compatibility with 

existing protocols and systems is vital for a smooth 

transition. Adopting PQC into BMC and NAC security 

architecture design will enhance the long-term security of 

network accelerators, protecting data and 

communications from future quantum threats and making 

the platform resilient and future-proof.  
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